Microscopic Observation of Preferential Capillary Pumping in Hollow Nanowire Bundles

Numerous studies have focused on designing micro/nanostructured surfaces to improve wicking capability for rapid liquid transport in many industrial applications. Although hierarchical surfaces have been demonstrated to enhance wicking capability, the underlying mechanism of liquid transport remains...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 38(2022), 1 vom: 11. Jan., Seite 352-362
1. Verfasser: Chun, Jiang (VerfasserIn)
Weitere Verfasser: Xu, Chen, Li, Qifan, Chen, Yansong, Zhao, Qishan, Yang, Wei, Wen, Rongfu, Ma, Xuehu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM333493281
003 DE-627
005 20231225221747.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.1c02647  |2 doi 
028 5 2 |a pubmed24n1111.xml 
035 |a (DE-627)NLM333493281 
035 |a (NLM)34812042 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chun, Jiang  |e verfasserin  |4 aut 
245 1 0 |a Microscopic Observation of Preferential Capillary Pumping in Hollow Nanowire Bundles 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Numerous studies have focused on designing micro/nanostructured surfaces to improve wicking capability for rapid liquid transport in many industrial applications. Although hierarchical surfaces have been demonstrated to enhance wicking capability, the underlying mechanism of liquid transport remains elusive. Here, we report the preferential capillary pumping on hollow hierarchical surfaces with internal nanostructures, which are different from the conventional solid hierarchical surfaces with external nanostructures. Specifically, capillary pumping preferentially occurs in the nanowire bundles instead of the interconnected V-groove on hollow hierarchical surfaces, observed by confocal laser scanning fluorescence microscopy. Theoretical analysis shows that capillary pumping capability is mainly dependent on the nanowire diameter and results in 15.5 times higher capillary climbing velocity in the nanowire bundles than that in the microscale V-groove. Driven by the Laplace pressure difference between nanowire bundles and V-grooves, the preferential capillary pumping is increased with the reduction of the nanowire diameter. Capillary pumping of the nanowire bundles provides a preferential path for rapid liquid flow, leading to 2 times higher wicking capability of the hollow hierarchical surface comparing with the conventional hierarchical surface. The unique mechanism of preferential capillary pumping revealed in this work paves the way for wicking enhancement and provides an insight into the design of wicking surfaces for high-performance capillary evaporation in a broad range of applications 
650 4 |a Journal Article 
700 1 |a Xu, Chen  |e verfasserin  |4 aut 
700 1 |a Li, Qifan  |e verfasserin  |4 aut 
700 1 |a Chen, Yansong  |e verfasserin  |4 aut 
700 1 |a Zhao, Qishan  |e verfasserin  |4 aut 
700 1 |a Yang, Wei  |e verfasserin  |4 aut 
700 1 |a Wen, Rongfu  |e verfasserin  |4 aut 
700 1 |a Ma, Xuehu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 38(2022), 1 vom: 11. Jan., Seite 352-362  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:38  |g year:2022  |g number:1  |g day:11  |g month:01  |g pages:352-362 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.1c02647  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 38  |j 2022  |e 1  |b 11  |c 01  |h 352-362