Rain garden infiltration rate modeling using gradient boosting machine and deep learning techniques

Rain garden is effective in reducing storm water runoff, whose efficiency depends upon several parameters such as soil type, vegetation and meteorological factors. Evaluation of rain gardens has been done by various researchers. However, knowledge for sound design of rain gardens is still very limit...

Description complète

Détails bibliographiques
Publié dans:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 84(2021), 9 vom: 15. Nov., Seite 2366-2379
Auteur principal: Kumar, Sandeep (Auteur)
Autres auteurs: Singh, K K
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:Water science and technology : a journal of the International Association on Water Pollution Research
Sujets:Journal Article Soil
LEADER 01000caa a22002652c 4500
001 NLM333476220
003 DE-627
005 20250302171256.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.2166/wst.2021.444  |2 doi 
028 5 2 |a pubmed25n1111.xml 
035 |a (DE-627)NLM333476220 
035 |a (NLM)34810317 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kumar, Sandeep  |e verfasserin  |4 aut 
245 1 0 |a Rain garden infiltration rate modeling using gradient boosting machine and deep learning techniques 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.11.2021 
500 |a Date Revised 24.11.2021 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Rain garden is effective in reducing storm water runoff, whose efficiency depends upon several parameters such as soil type, vegetation and meteorological factors. Evaluation of rain gardens has been done by various researchers. However, knowledge for sound design of rain gardens is still very limited, particularly the accurate modeling of infiltration rate and how much it differs from infiltration of natural ground surface. The present study uses experimentally observed infiltration rate of rain gardens with different types of vegetation (grass, candytuft, marigold and daisy with different plant densities) and flow conditions. After that, modeling has been done by the popular infiltration model i.e. Philip's model (which is valid for natural ground surface) and soft computing tools viz. Gradient Boosting Machine (GBM) and Deep Learning (DL). Results suggest a promising performance (in terms of CC, RMSE, MAE, MSE and NSE) by GBM and DL in comparison to the relation proposed by Philip's model (1957). Most of the values predicted by both GBM and DL are within scatter limits of ±5%, whereas the values by Philips model are within the range of ±25% error lines and even outside. GBM performs better than DL as the values of the correlation coefficients and Nash-Sutcliffe model efficiency (NSE) coefficient are the highest and the root mean square error is the lowest. The results of the study will be useful in selection of plant type and its density in the rain garden of the urban area 
650 4 |a Journal Article 
650 7 |a Soil  |2 NLM 
700 1 |a Singh, K K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water science and technology : a journal of the International Association on Water Pollution Research  |d 1986  |g 84(2021), 9 vom: 15. Nov., Seite 2366-2379  |w (DE-627)NLM098149431  |x 0273-1223  |7 nnas 
773 1 8 |g volume:84  |g year:2021  |g number:9  |g day:15  |g month:11  |g pages:2366-2379 
856 4 0 |u http://dx.doi.org/10.2166/wst.2021.444  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 84  |j 2021  |e 9  |b 15  |c 11  |h 2366-2379