Seeing Like a Human : Asynchronous Learning With Dynamic Progressive Refinement for Person Re-Identification

Learning discriminative and rich features is an important research task for person re-identification. Previous studies have attempted to capture global and local features at the same time and layer of the model in a non-interactive manner, which are called synchronous learning. However, synchronous...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 22., Seite 352-365
1. Verfasser: Zhang, Quan (VerfasserIn)
Weitere Verfasser: Lai, Jianhuang, Feng, Zhanxiang, Xie, Xiaohua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM333451511
003 DE-627
005 20231225221701.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3128330  |2 doi 
028 5 2 |a pubmed24n1111.xml 
035 |a (DE-627)NLM333451511 
035 |a (NLM)34807829 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Quan  |e verfasserin  |4 aut 
245 1 0 |a Seeing Like a Human  |b Asynchronous Learning With Dynamic Progressive Refinement for Person Re-Identification 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.12.2021 
500 |a Date Revised 16.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Learning discriminative and rich features is an important research task for person re-identification. Previous studies have attempted to capture global and local features at the same time and layer of the model in a non-interactive manner, which are called synchronous learning. However, synchronous learning leads to high similarity, and further defects in model performance. To this end, we propose asynchronous learning based on the human visual perception mechanism. Asynchronous learning emphasizes the time asynchrony and space asynchrony of feature learning and achieves mutual promotion and cyclical interaction for feature learning. Furthermore, we design a dynamic progressive refinement module to improve local features with the guidance of global features. The dynamic property allows this module to adaptively adjust the network parameters according to the input image, in both the training and testing stage. The progressive property narrows the semantic gap between the global and local features, which is due to the guidance of global features. Finally, we have conducted several experiments on four datasets, including Market1501, CUHK03, DukeMTMC-ReID, and MSMT17. The experimental results show that asynchronous learning can effectively improve feature discrimination and achieve strong performance 
650 4 |a Journal Article 
700 1 |a Lai, Jianhuang  |e verfasserin  |4 aut 
700 1 |a Feng, Zhanxiang  |e verfasserin  |4 aut 
700 1 |a Xie, Xiaohua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 22., Seite 352-365  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:22  |g pages:352-365 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3128330  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 22  |h 352-365