Two-Photon 3D Laser Printing Inside Synthetic Cells

© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 6 vom: 01. Feb., Seite e2106709
1. Verfasser: Abele, Tobias (VerfasserIn)
Weitere Verfasser: Messer, Tobias, Jahnke, Kevin, Hippler, Marc, Bastmeyer, Martin, Wegener, Martin, Göpfrich, Kerstin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 3D laser printing PEGDA hydrogel additive manufacturing bottom-up synthetic biology direct laser writing giant unilamellar lipid vesicles transmembrane pores Unilamellar Liposomes
LEADER 01000naa a22002652 4500
001 NLM333376617
003 DE-627
005 20231225221534.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202106709  |2 doi 
028 5 2 |a pubmed24n1111.xml 
035 |a (DE-627)NLM333376617 
035 |a (NLM)34800321 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Abele, Tobias  |e verfasserin  |4 aut 
245 1 0 |a Two-Photon 3D Laser Printing Inside Synthetic Cells 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.03.2022 
500 |a Date Revised 01.04.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a Toward the ambitious goal of manufacturing synthetic cells from the bottom up, various cellular components have already been reconstituted inside lipid vesicles. However, the deterministic positioning of these components inside the compartment has remained elusive. Here, by using two-photon 3D laser printing, 2D and 3D hydrogel architectures are manufactured with high precision and nearly arbitrary shape inside preformed giant unilamellar lipid vesicles (GUVs). The required water-soluble photoresist is brought into the GUVs by diffusion in a single mixing step. Crucially, femtosecond two-photon printing inside the compartment does not destroy the GUVs. Beyond this proof-of-principle demonstration, early functional architectures are realized. In particular, a transmembrane structure acting as a pore is 3D printed, thereby allowing for the transport of biological cargo, including DNA, into the synthetic compartment. These experiments show that two-photon 3D laser microprinting can be an important addition to the existing toolbox of synthetic biology 
650 4 |a Journal Article 
650 4 |a 3D laser printing 
650 4 |a PEGDA hydrogel 
650 4 |a additive manufacturing 
650 4 |a bottom-up synthetic biology 
650 4 |a direct laser writing 
650 4 |a giant unilamellar lipid vesicles 
650 4 |a transmembrane pores 
650 7 |a Unilamellar Liposomes  |2 NLM 
700 1 |a Messer, Tobias  |e verfasserin  |4 aut 
700 1 |a Jahnke, Kevin  |e verfasserin  |4 aut 
700 1 |a Hippler, Marc  |e verfasserin  |4 aut 
700 1 |a Bastmeyer, Martin  |e verfasserin  |4 aut 
700 1 |a Wegener, Martin  |e verfasserin  |4 aut 
700 1 |a Göpfrich, Kerstin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 6 vom: 01. Feb., Seite e2106709  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:6  |g day:01  |g month:02  |g pages:e2106709 
856 4 0 |u http://dx.doi.org/10.1002/adma.202106709  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 6  |b 01  |c 02  |h e2106709