Remote Sensing Scene Classification via Multi-Branch Local Attention Network

Remote sensing scene classification (RSSC) is a hotspot and play very important role in the field of remote sensing image interpretation in recent years. With the recent development of the convolutional neural networks, a significant breakthrough has been made in the classification of remote sensing...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 12., Seite 99-109
1. Verfasser: Chen, Si-Bao (VerfasserIn)
Weitere Verfasser: Wei, Qing-Song, Wang, Wen-Zhong, Tang, Jin, Luo, Bin, Wang, Zu-Yuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM333307100
003 DE-627
005 20231225221406.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3127851  |2 doi 
028 5 2 |a pubmed24n1110.xml 
035 |a (DE-627)NLM333307100 
035 |a (NLM)34793302 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Si-Bao  |e verfasserin  |4 aut 
245 1 0 |a Remote Sensing Scene Classification via Multi-Branch Local Attention Network 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.12.2021 
500 |a Date Revised 14.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Remote sensing scene classification (RSSC) is a hotspot and play very important role in the field of remote sensing image interpretation in recent years. With the recent development of the convolutional neural networks, a significant breakthrough has been made in the classification of remote sensing scenes. Many objects form complex and diverse scenes through spatial combination and association, which makes it difficult to classify remote sensing image scenes. The problem of insufficient differentiation of feature representations extracted by Convolutional Neural Networks (CNNs) still exists, which is mainly due to the characteristics of similarity for inter-class images and diversity for intra-class images. In this paper, we propose a remote sensing image scene classification method via Multi-Branch Local Attention Network (MBLANet), where Convolutional Local Attention Module (CLAM) is embedded into all down-sampling blocks and residual blocks of ResNet backbone. CLAM contains two submodules, Convolutional Channel Attention Module (CCAM) and Local Spatial Attention Module (LSAM). The two submodules are placed in parallel to obtain both channel and spatial attentions, which helps to emphasize the main target in the complex background and improve the ability of feature representation. Extensive experiments on three benchmark datasets show that our method is better than state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Wei, Qing-Song  |e verfasserin  |4 aut 
700 1 |a Wang, Wen-Zhong  |e verfasserin  |4 aut 
700 1 |a Tang, Jin  |e verfasserin  |4 aut 
700 1 |a Luo, Bin  |e verfasserin  |4 aut 
700 1 |a Wang, Zu-Yuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 12., Seite 99-109  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:12  |g pages:99-109 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3127851  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 12  |h 99-109