Defocus Image Deblurring Network With Defocus Map Estimation as Auxiliary Task

Different from the object motion blur, the defocus blur is caused by the limitation of the cameras' depth of field. The defocus amount can be characterized by the parameter of point spread function and thus forms a defocus map. In this paper, we propose a new network architecture called Defocus...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 12., Seite 216-226
1. Verfasser: Ma, Haoyu (VerfasserIn)
Weitere Verfasser: Liu, Shaojun, Liao, Qingmin, Zhang, Juncheng, Xue, Jing-Hao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM333307097
003 DE-627
005 20231225221406.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3127850  |2 doi 
028 5 2 |a pubmed24n1110.xml 
035 |a (DE-627)NLM333307097 
035 |a (NLM)34793301 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ma, Haoyu  |e verfasserin  |4 aut 
245 1 0 |a Defocus Image Deblurring Network With Defocus Map Estimation as Auxiliary Task 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Different from the object motion blur, the defocus blur is caused by the limitation of the cameras' depth of field. The defocus amount can be characterized by the parameter of point spread function and thus forms a defocus map. In this paper, we propose a new network architecture called Defocus Image Deblurring Auxiliary Learning Net (DID-ANet), which is specifically designed for single image defocus deblurring by using defocus map estimation as auxiliary task to improve the deblurring result. To facilitate the training of the network, we build a novel and large-scale dataset for single image defocus deblurring, which contains the defocus images, the defocus maps and the all-sharp images. To the best of our knowledge, the new dataset is the first large-scale defocus deblurring dataset for training deep networks. Moreover, the experimental results demonstrate that the proposed DID-ANet outperforms the state-of-the-art methods for both tasks of defocus image deblurring and defocus map estimation, both quantitatively and qualitatively. The dataset, code, and model is available on GitHub: https://github.com/xytmhy/DID-ANet-Defocus-Deblurring 
650 4 |a Journal Article 
700 1 |a Liu, Shaojun  |e verfasserin  |4 aut 
700 1 |a Liao, Qingmin  |e verfasserin  |4 aut 
700 1 |a Zhang, Juncheng  |e verfasserin  |4 aut 
700 1 |a Xue, Jing-Hao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 12., Seite 216-226  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:12  |g pages:216-226 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3127850  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 12  |h 216-226