ControlVAE : Tuning, Analytical Properties, and Performance Analysis

This paper reviews the novel concept of a controllable variational autoencoder (ControlVAE), discusses its parameter tuning to meet application needs, derives its key analytic properties, and offers useful extensions and applications. ControlVAE is a new variational autoencoder (VAE) framework that...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 12 vom: 01. Dez., Seite 9285-9297
1. Verfasser: Shao, Huajie (VerfasserIn)
Weitere Verfasser: Xiao, Zhisheng, Yao, Shuochao, Sun, Dachun, Zhang, Aston, Liu, Shengzhong, Wang, Tianshi, Li, Jinyang, Abdelzaher, Tarek
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM333258843
003 DE-627
005 20231225221305.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3127323  |2 doi 
028 5 2 |a pubmed24n1110.xml 
035 |a (DE-627)NLM333258843 
035 |a (NLM)34788217 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shao, Huajie  |e verfasserin  |4 aut 
245 1 0 |a ControlVAE  |b Tuning, Analytical Properties, and Performance Analysis 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper reviews the novel concept of a controllable variational autoencoder (ControlVAE), discusses its parameter tuning to meet application needs, derives its key analytic properties, and offers useful extensions and applications. ControlVAE is a new variational autoencoder (VAE) framework that combines automatic control theory with the basic VAE to stabilize the KL-divergence of VAE models to a specified value. It leverages a non-linear PI controller, a variant of the proportional-integral-derivative (PID) controller, to dynamically tune the weight of the KL-divergence term in the evidence lower bound (ELBO) using the output KL-divergence as feedback. This allows us to precisely control the KL-divergence to a desired value (set point) that is effective in avoiding posterior collapse and learning disentangled representations. While prior work developed alternative techniques for controlling the KL divergence, we show that our PI controller has better stability properties and thus better convergence, thereby producing better disentangled representations from finite training data. In order to improve the ELBO of ControlVAE over that of the regular VAE, we provide a simplified theoretical analysis to inform the choice of set point for the KL-divergence of ControlVAE. We evaluate the proposed method on three tasks: image generation, language modeling, and disentangled representation learning. The results show that ControlVAE can achieve much better reconstruction quality than the other methods for comparable disentanglement. On the language modeling task, our method can avoid posterior collapse (KL vanishing) and improve the diversity of generated text. Moreover, it can change the optimization trajectory, improving the ELBO and the reconstruction quality for image generation 
650 4 |a Journal Article 
700 1 |a Xiao, Zhisheng  |e verfasserin  |4 aut 
700 1 |a Yao, Shuochao  |e verfasserin  |4 aut 
700 1 |a Sun, Dachun  |e verfasserin  |4 aut 
700 1 |a Zhang, Aston  |e verfasserin  |4 aut 
700 1 |a Liu, Shengzhong  |e verfasserin  |4 aut 
700 1 |a Wang, Tianshi  |e verfasserin  |4 aut 
700 1 |a Li, Jinyang  |e verfasserin  |4 aut 
700 1 |a Abdelzaher, Tarek  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 12 vom: 01. Dez., Seite 9285-9297  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:12  |g day:01  |g month:12  |g pages:9285-9297 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3127323  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 12  |b 01  |c 12  |h 9285-9297