Functionalizing Framework Nucleic-Acid-Based Nanostructures for Biomedical Application

© 2022 Wiley-VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 46 vom: 15. Nov., Seite e2107820
Auteur principal: Zhang, Tao (Auteur)
Autres auteurs: Tian, Taoran, Lin, Yunfeng
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article Review ROS scavenging antibacterial therapy anticancer therapy drug delivery dynamic DNA structure tetrahedral framework nucleic acids tissue engineering Nucleic Acids plus... DNA 9007-49-2 DNA, Single-Stranded Oligonucleotides
LEADER 01000caa a22002652c 4500
001 NLM333256107
003 DE-627
005 20250302164656.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202107820  |2 doi 
028 5 2 |a pubmed25n1110.xml 
035 |a (DE-627)NLM333256107 
035 |a (NLM)34787933 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Tao  |e verfasserin  |4 aut 
245 1 0 |a Functionalizing Framework Nucleic-Acid-Based Nanostructures for Biomedical Application 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.11.2022 
500 |a Date Revised 21.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2022 Wiley-VCH GmbH. 
520 |a Strategies for functionalizing diverse tetrahedral framework nucleic acids (tFNAs) have been extensively explored since the first successful fabrication of tFNA by Turberfield. One-pot annealing of at least four DNA single strands is the most common method to prepare tFNA, as it optimizes the cost, yield, and speed of assembly. Herein, the focus is on four key merits of tFNAs and their potential for biomedical applications. The natural ability of tFNA to scavenge reactive oxygen species, along with remarkable enhancement in cellular endocytosis and tissue permeability based on its appropriate size and geometry, promotes cell-material interactions to direct or probe cell behavior, especially to treat inflammatory and degenerative diseases. Moreover, the structural programmability of tFNA enables the development of static tFNA-based nanomaterials via engineering of functional oligonucleotides or therapeutic molecules, and dynamic tFNAs via attachment of stimuli-responsive DNA apparatuses, leading to potential applications in targeted therapies, tissue regeneration, antitumor strategies, and antibacterial treatment. Although there are impressive performance and significant progress, the challenges and prospects of functionalizing tFNA-based nanostructures are still indicated in this review 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a ROS scavenging 
650 4 |a antibacterial therapy 
650 4 |a anticancer therapy 
650 4 |a drug delivery 
650 4 |a dynamic DNA structure 
650 4 |a tetrahedral framework nucleic acids 
650 4 |a tissue engineering 
650 7 |a Nucleic Acids  |2 NLM 
650 7 |a DNA  |2 NLM 
650 7 |a 9007-49-2  |2 NLM 
650 7 |a DNA, Single-Stranded  |2 NLM 
650 7 |a Oligonucleotides  |2 NLM 
700 1 |a Tian, Taoran  |e verfasserin  |4 aut 
700 1 |a Lin, Yunfeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 46 vom: 15. Nov., Seite e2107820  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:34  |g year:2022  |g number:46  |g day:15  |g month:11  |g pages:e2107820 
856 4 0 |u http://dx.doi.org/10.1002/adma.202107820  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 46  |b 15  |c 11  |h e2107820