Natural Language to Visualization by Neural Machine Translation

Supporting the translation from natural language (NL) query to visualization (NL2VIS) can simplify the creation of data visualizations because if successful, anyone can generate visualizations by their natural language from the tabular data. The state-of-the-art NL2VIS approaches (e.g., NL4DV and Fl...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 1 vom: 16. Jan., Seite 217-226
1. Verfasser: Luo, Yuyu (VerfasserIn)
Weitere Verfasser: Tang, Nan, Li, Guoliang, Tang, Jiawei, Chai, Chengliang, Qin, Xuedi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM333219767
003 DE-627
005 20231225221214.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2021.3114848  |2 doi 
028 5 2 |a pubmed24n1110.xml 
035 |a (DE-627)NLM333219767 
035 |a (NLM)34784276 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Luo, Yuyu  |e verfasserin  |4 aut 
245 1 0 |a Natural Language to Visualization by Neural Machine Translation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.01.2022 
500 |a Date Revised 04.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Supporting the translation from natural language (NL) query to visualization (NL2VIS) can simplify the creation of data visualizations because if successful, anyone can generate visualizations by their natural language from the tabular data. The state-of-the-art NL2VIS approaches (e.g., NL4DV and FlowSense) are based on semantic parsers and heuristic algorithms, which are not end-to-end and are not designed for supporting (possibly) complex data transformations. Deep neural network powered neural machine translation models have made great strides in many machine translation tasks, which suggests that they might be viable for NL2VIS as well. In this paper, we present ncNet, a Transformer-based sequence-to-sequence model for supporting NL2VIS, with several novel visualization-aware optimizations, including using attention-forcing to optimize the learning process, and visualization-aware rendering to produce better visualization results. To enhance the capability of machine to comprehend natural language queries, ncNet is also designed to take an optional chart template (e.g., a pie chart or a scatter plot) as an additional input, where the chart template will be served as a constraint to limit what could be visualized. We conducted both quantitative evaluation and user study, showing that ncNet achieves good accuracy in the nvBench benchmark and is easy-to-use 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Tang, Nan  |e verfasserin  |4 aut 
700 1 |a Li, Guoliang  |e verfasserin  |4 aut 
700 1 |a Tang, Jiawei  |e verfasserin  |4 aut 
700 1 |a Chai, Chengliang  |e verfasserin  |4 aut 
700 1 |a Qin, Xuedi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 28(2022), 1 vom: 16. Jan., Seite 217-226  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:28  |g year:2022  |g number:1  |g day:16  |g month:01  |g pages:217-226 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2021.3114848  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 1  |b 16  |c 01  |h 217-226