|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM333217888 |
003 |
DE-627 |
005 |
20250302164223.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202106253
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1110.xml
|
035 |
|
|
|a (DE-627)NLM333217888
|
035 |
|
|
|a (NLM)34784072
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liu, Ji
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Additive Manufacturing of Ti3 C2 -MXene-Functionalized Conductive Polymer Hydrogels for Electromagnetic-Interference Shielding
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 03.02.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a The ongoing miniaturization of devices and development of wireless and implantable technologies demand electromagnetic interference (EMI)-shielding materials with customizability. Additive manufacturing of conductive polymer hydrogels with favorable conductivity and biocompatibility can offer new opportunities for EMI-shielding applications. However, simultaneously achieving high conductivity, design freedom, and shape fidelity in 3D printing of conductive polymer hydrogels is still very challenging. Here, an aqueous Ti3 C2 -MXene-functionalized poly(3,4-ethylenedioxythiophene):polystyrene sulfonate ink is developed for extrusion printing to create 3D objects with arbitrary geometries, and a freeze-thawing protocol is proposed to transform the printed objects directly into highly conductive and robust hydrogels with high shape fidelity on both the macro- and microscale. The as-obtained hydrogel exhibits a high conductivity of 1525.8 S m-1 at water content up to 96.6 wt% and also satisfactory mechanical properties with flexibility, stretchability, and fatigue resistance. Furthermore, the use of the printed hydrogel for customizable EMI-shielding applications is demonstrated. The proposed easy-to-manufacture approach, along with the highlighted superior properties, expands the potential of conductive polymer hydrogels in future customizable applications and represents a real breakthrough from the current state of the art
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a MXenes
|
650 |
|
4 |
|a additive manufacturing
|
650 |
|
4 |
|a electromagnetic-interference shielding
|
650 |
|
4 |
|a hydrogels
|
650 |
|
4 |
|a poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)
|
700 |
1 |
|
|a Mckeon, Lorcan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Garcia, James
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pinilla, Sergio
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Barwich, Sebastian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Möbius, Matthias
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Stamenov, Plamen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Coleman, Jonathan N
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nicolosi, Valeria
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 5 vom: 01. Feb., Seite e2106253
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:5
|g day:01
|g month:02
|g pages:e2106253
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202106253
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 5
|b 01
|c 02
|h e2106253
|