|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM333110943 |
003 |
DE-627 |
005 |
20241013231826.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202101833
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1566.xml
|
035 |
|
|
|a (DE-627)NLM333110943
|
035 |
|
|
|a (NLM)34773315
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wu, Jiaying
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A Comparison of Charge Carrier Dynamics in Organic and Perovskite Solar Cells
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 13.10.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
|
520 |
|
|
|a The charge carrier dynamics in organic solar cells and organic-inorganic hybrid metal halide perovskite solar cells, two leading technologies in thin-film photovoltaics, are compared. The similarities and differences in charge generation, charge separation, charge transport, charge collection, and charge recombination in these two technologies are discussed, linking these back to the intrinsic material properties of organic and perovskite semiconductors, and how these factors impact on photovoltaic device performance is elucidated. In particular, the impact of exciton binding energy, charge transfer states, bimolecular recombination, charge carrier transport, sub-bandgap tail states, and surface recombination is evaluated, and the lessons learned from transient optical and optoelectronic measurements are discussed. This perspective thus highlights the key factors limiting device performance and rationalizes similarities and differences in design requirements between organic and perovskite solar cells
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a charge recombination
|
650 |
|
4 |
|a charge transport
|
650 |
|
4 |
|a charge trapping
|
650 |
|
4 |
|a photophysics
|
650 |
|
4 |
|a solar cells
|
700 |
1 |
|
|a Cha, Hyojung
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Du, Tian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dong, Yifan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Weidong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lin, Chieh-Ting
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Durrant, James R
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 2 vom: 30. Jan., Seite e2101833
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:2
|g day:30
|g month:01
|g pages:e2101833
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202101833
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 2
|b 30
|c 01
|h e2101833
|