The Operating Cycle of NO Adsorption and Desorption in Pd-Chabazite for Passive NOx Adsorbers
Pd-doped chabazite (Pd/CHA) offers unique opportunities to adsorb and desorb NOx in the target temperature range for application as a passive NOx adsorber (PNA). The ability of Pd/CHA to trap NOx emissions at low temperatures (<200 °C) is facilitated by the binding of NOx species at various Pd si...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1999. - 37(2021), 47 vom: 30. Nov., Seite 13799-13809 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article chabazite Zeolites 1318-02-1 |
Zusammenfassung: | Pd-doped chabazite (Pd/CHA) offers unique opportunities to adsorb and desorb NOx in the target temperature range for application as a passive NOx adsorber (PNA). The ability of Pd/CHA to trap NOx emissions at low temperatures (<200 °C) is facilitated by the binding of NOx species at various Pd sites available in the CHA framework. Density functional theory (DFT) simulations are performed to understand Pd speciation in CHA and the interaction of NO with Pd/CHA to explain the mechanisms of NO adsorption, oxidation, and desorption processes. The calculations are used to elucidate the important role of Pd1+ cationic species, anchored at 6MR-3NN, in providing a strong (Eb = -272 kJ/mol) NO adsorption site in Pd/CHA. For NO release, the redox transformation of Pd species comes into play and Pd1+ species are suggested to transform into cationic Pd2+, [PdOH]+, or [Pd-O-Pd]2+ species, all of which show significantly reduced NO binding (-116, -153, and -117 kJ/mol, respectively) as compared to Pd1+. This enables NO desorption at the operating temperature of a downstream catalyst for subsequent catalytic reduction |
---|---|
Beschreibung: | Date Completed 27.01.2022 Date Revised 27.01.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.1c01383 |