|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM333012720 |
003 |
DE-627 |
005 |
20231225220748.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202105845
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1110.xml
|
035 |
|
|
|a (DE-627)NLM333012720
|
035 |
|
|
|a (NLM)34763374
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Heo, Yooun
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Boosting Piezoelectricity under Illumination via the Bulk Photovoltaic Effect and the Schottky Barrier Effect in BiFeO3
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 03.02.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
|
520 |
|
|
|a Piezoelectricity is a key functionality induced by conversion between mechanical and electrical energy. Enhancement of piezoelectricity in ferroelectrics often has been realized by complicated synthetical approaches to host unique structural boundaries, so-called morphotropic phase boundaries. While structural approaches are well-known, enhancing piezoelectricity by external stimuli has yet to be clearly explored, despite their advantages of offering not only simple and in situ control without any prior processing requirement, but compatibility with other functionalities. Here, it is shown that light is a powerful control parameter to enhance the piezoelectric property of BiFeO3 single crystals. A series of measurements based on piezoresponse force microscopy and conductive atomic force microscopy, under illumination, reveal a locally enhanced effective piezoelectric coefficient, dzz , eventually showing almost a sevenfold increase. This phenomenon is explained with theoretical models by introducing the two main underlying mechanisms attributed to the bulk photovoltaic effect and Schottky barrier effect, involving the role of open-circuit voltage and photocharge carrier density. These results provide key insights to light-induced piezoelectricity enhancement, offering its potential for multifunctional optoelectronic devices
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Schottky barriers
|
650 |
|
4 |
|a bulk photovoltaic effect
|
650 |
|
4 |
|a ferroelectrics
|
650 |
|
4 |
|a piezoelectricity
|
700 |
1 |
|
|a Alexe, Marin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 5 vom: 11. Feb., Seite e2105845
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:5
|g day:11
|g month:02
|g pages:e2105845
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202105845
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 5
|b 11
|c 02
|h e2105845
|