ZeroNAS : Differentiable Generative Adversarial Networks Search for Zero-Shot Learning

In recent years, remarkable progress in zero-shot learning (ZSL) has been achieved by generative adversarial networks (GAN). To compensate for the lack of training samples in ZSL, a surge of GAN architectures have been developed by human experts through trial-and-error testing. Despite their efficac...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 12 vom: 02. Dez., Seite 9733-9740
1. Verfasser: Yan, Caixia (VerfasserIn)
Weitere Verfasser: Chang, Xiaojun, Li, Zhihui, Guan, Weili, Ge, Zongyuan, Zhu, Lei, Zheng, Qinghua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM333004868
003 DE-627
005 20231225220733.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3127346  |2 doi 
028 5 2 |a pubmed24n1109.xml 
035 |a (DE-627)NLM333004868 
035 |a (NLM)34762584 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yan, Caixia  |e verfasserin  |4 aut 
245 1 0 |a ZeroNAS  |b Differentiable Generative Adversarial Networks Search for Zero-Shot Learning 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.11.2022 
500 |a Date Revised 19.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In recent years, remarkable progress in zero-shot learning (ZSL) has been achieved by generative adversarial networks (GAN). To compensate for the lack of training samples in ZSL, a surge of GAN architectures have been developed by human experts through trial-and-error testing. Despite their efficacy, however, there is still no guarantee that these hand-crafted models can consistently achieve good performance across diversified datasets or scenarios. Accordingly, in this paper, we turn to neural architecture search (NAS) and make the first attempt to bring NAS techniques into the ZSL realm. Specifically, we propose a differentiable GAN architecture search method over a specifically designed search space for zero-shot learning, referred to as ZeroNAS. Considering the relevance and balance of the generator and discriminator, ZeroNAS jointly searches their architectures in a min-max player game via adversarial training. Extensive experiments conducted on four widely used benchmark datasets demonstrate that ZeroNAS is capable of discovering desirable architectures that perform favorably against state-of-the-art ZSL and generalized zero-shot learning (GZSL) approaches. Source code is at https://github.com/caixiay/ZeroNAS 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Chang, Xiaojun  |e verfasserin  |4 aut 
700 1 |a Li, Zhihui  |e verfasserin  |4 aut 
700 1 |a Guan, Weili  |e verfasserin  |4 aut 
700 1 |a Ge, Zongyuan  |e verfasserin  |4 aut 
700 1 |a Zhu, Lei  |e verfasserin  |4 aut 
700 1 |a Zheng, Qinghua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 12 vom: 02. Dez., Seite 9733-9740  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:12  |g day:02  |g month:12  |g pages:9733-9740 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3127346  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 12  |b 02  |c 12  |h 9733-9740