|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM332997359 |
003 |
DE-627 |
005 |
20250302161553.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202105190
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1109.xml
|
035 |
|
|
|a (DE-627)NLM332997359
|
035 |
|
|
|a (NLM)34761821
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Xu, Xiangming
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Lattice Orientation Heredity in the Transformation of 2D Epitaxial Films
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 27.01.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a The ability to control lattice orientation is often an essential requirement in the growth of both 2D van der Waals (vdW) layered and nonlayered thin films. Here, a unique and universal phenomenon termed "lattice orientation heredity" (LOH) is reported. LOH enables product films (including 2D-layered materials) to inherit the lattice orientation from reactant films in a chemical conversion process, excluding the requirement on the substrate lattice order. The process universality is demonstrated by investigating the lattice transformations in the carbonization, nitridation, and sulfurization of epitaxial MoO2 , ZnO, and In2 O3 thin films. Their resultant compounds all inherit the mono-oriented crystal feature from their precursor oxides, including 2D vdW-layered semiconductors (e.g., MoS2 ), metallic films (e.g., MXene-like Mo2 C and MoN), wide-bandgap semiconductors (e.g., hexagonal ZnS), and ferroelectric semiconductors (e.g., In2 S3 ). Using LOH-grown MoN as a seeding layer, mono-oriented GaN is achieved on an amorphous quartz substrate. The LOH process presents a universal strategy capable of growing epitaxial thin films (including 2D vdW-layered materials) not only on single-crystalline but also on noncrystalline substrates
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 2D materials
|
650 |
|
4 |
|a chemical conversion
|
650 |
|
4 |
|a epitaxy
|
650 |
|
4 |
|a gallium nitride
|
650 |
|
4 |
|a lattice orientation heredity
|
650 |
|
4 |
|a thin films
|
700 |
1 |
|
|a Smajic, Jasmin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Kuang-Hui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Min, Jung-Wook
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lei, Yongjiu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Davaasuren, Bambar
|e verfasserin
|4 aut
|
700 |
1 |
|
|a He, Xin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Xixiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ooi, Boon S
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Costa, Pedro M F J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Alshareef, Husam N
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 4 vom: 01. Jan., Seite e2105190
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:4
|g day:01
|g month:01
|g pages:e2105190
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202105190
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 4
|b 01
|c 01
|h e2105190
|