Strategies for the optimization of the structure of crystalline compounds

© 2021 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 43(2022), 3 vom: 30. Jan., Seite 184-196
1. Verfasser: Pascale, Fabien (VerfasserIn)
Weitere Verfasser: D'Arco, Philippe, Silvio Gentile, Francesco, Dovesi, Roberto
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article combining optimizer and dynamical matrix groups and subgroups negative wavenumbers stationary points and real minima the SCANMODE option unit cell size
LEADER 01000naa a22002652 4500
001 NLM332938603
003 DE-627
005 20231225220615.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26781  |2 doi 
028 5 2 |a pubmed24n1109.xml 
035 |a (DE-627)NLM332938603 
035 |a (NLM)34755892 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pascale, Fabien  |e verfasserin  |4 aut 
245 1 0 |a Strategies for the optimization of the structure of crystalline compounds 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Wiley Periodicals LLC. 
520 |a When different proposals exist (or can reasonably be formulated) for the size of the unit cell (in terms of number of atoms) and space group of crystalline compounds, a strategy for exploring with simulation methods the various cases and for investigating their relative stability must be defined. The optimization schemes of periodic quantum mechanical codes work in fact at fixed space group and number of atoms per unit cell, so that only the fractional coordinates of the atoms and the lattice parameters are optimized. A strategy is here presented, based on four standard tools, used synergistically and in sequence: (1) the optimization of inner coordinates and unit cell parameters; (2) the calculation of the vibrational frequencies not only at Γ , but also at a set of k → points (in the example presented here they are eight, generated by a shrinking factor 2), looking for possible negative wavenumbers. The latter correspond to maxima, rather than minima, along the coordinate described by the corresponding normal mode; (3) the exploration of the total energy along the mode with negative wavenumber, looking for the minimum of the curve; (4) the identification of the new space group corresponding to the reduced symmetry resulting from the previous step. The strategy is illustrated with reference to the KMnF3 perovskite compound, for which many space groups are proposed in the literature, ranging from cubic Pm 3 ¯ m to tetragonal P 4 m bm or I 4 m cm and orthorhombic (Pnma and Cmcm) down to monoclinic (P21 /m). The corresponding primitive cells contain 5, 10, and 20 atoms in the various cases, and the point symmetry reduces from 48 to 4 operators. In nature, the KMnF3 phase transitions also include the magnetic phases. For simplicity, here we limit the analysis to the ones that take place between ferromagnetic phases, as they are sufficiently rich for illustrating the proposed strategy. As the total energy differences involved can be as small as, say, 10-50 μHartree, a high numerical accuracy at each one of the steps mentioned above is required. The present calculations, performed with the CRYSTAL code, by using an all electron basis set and the Hartree-Fock and B3LYP functionals, document such an accuracy. The energy difference between the tetragonal I 4 m cm and cubic Pm 3 ¯ m phases is 225 μHartree, with a volume reduction of 0.58 Å3 ; the differences between the orthorhombic and tetragonal phases are an order of magnitude smaller, being 23 μHartree and 0.06 Å3 for total energy and cell volume, respectively 
650 4 |a Journal Article 
650 4 |a combining optimizer and dynamical matrix 
650 4 |a groups and subgroups 
650 4 |a negative wavenumbers 
650 4 |a stationary points and real minima 
650 4 |a the SCANMODE option 
650 4 |a unit cell size 
700 1 |a D'Arco, Philippe  |e verfasserin  |4 aut 
700 1 |a Silvio Gentile, Francesco  |e verfasserin  |4 aut 
700 1 |a Dovesi, Roberto  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 43(2022), 3 vom: 30. Jan., Seite 184-196  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:43  |g year:2022  |g number:3  |g day:30  |g month:01  |g pages:184-196 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26781  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2022  |e 3  |b 30  |c 01  |h 184-196