Progressive Learning of Category-Consistent Multi-Granularity Features for Fine-Grained Visual Classification

Fine-grained visual classification (FGVC) is much more challenging than traditional classification tasks due to the inherently subtle intra-class object variations. Recent works are mainly part-driven (either explicitly or implicitly), with the assumption that fine-grained information naturally rests...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 12 vom: 09. Dez., Seite 9521-9535
1. Verfasser: Du, Ruoyi (VerfasserIn)
Weitere Verfasser: Xie, Jiyang, Ma, Zhanyu, Chang, Dongliang, Song, Yi-Zhe, Guo, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM332903788
003 DE-627
005 20231225220532.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3126668  |2 doi 
028 5 2 |a pubmed24n1109.xml 
035 |a (DE-627)NLM332903788 
035 |a (NLM)34752385 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Du, Ruoyi  |e verfasserin  |4 aut 
245 1 0 |a Progressive Learning of Category-Consistent Multi-Granularity Features for Fine-Grained Visual Classification 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.11.2022 
500 |a Date Revised 19.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Fine-grained visual classification (FGVC) is much more challenging than traditional classification tasks due to the inherently subtle intra-class object variations. Recent works are mainly part-driven (either explicitly or implicitly), with the assumption that fine-grained information naturally rests within the parts. In this paper, we take a different stance, and show that part operations are not strictly necessary - the key lies with encouraging the network to learn at different granularities and progressively fusing multi-granularity features together. In particular, we propose: (i) a progressive training strategy that effectively fuses features from different granularities, and (ii) a consistent block convolution that encourages the network to learn the category-consistent features at specific granularities. We evaluate on several standard FGVC benchmark datasets, and demonstrate the proposed method consistently outperforms existing alternatives or delivers competitive results. Codes are available at https://github.com/PRIS-CV/PMG-V2 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Xie, Jiyang  |e verfasserin  |4 aut 
700 1 |a Ma, Zhanyu  |e verfasserin  |4 aut 
700 1 |a Chang, Dongliang  |e verfasserin  |4 aut 
700 1 |a Song, Yi-Zhe  |e verfasserin  |4 aut 
700 1 |a Guo, Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 12 vom: 09. Dez., Seite 9521-9535  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:12  |g day:09  |g month:12  |g pages:9521-9535 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3126668  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 12  |b 09  |c 12  |h 9521-9535