Fine-Grained Image Analysis With Deep Learning : A Survey

Fine-grained image analysis (FGIA) is a longstanding and fundamental problem in computer vision and pattern recognition, and underpins a diverse set of real-world applications. The task of FGIA targets analyzing visual objects from subordinate categories, e.g., species of birds or models of cars. Th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 12 vom: 09. Dez., Seite 8927-8948
1. Verfasser: Wei, Xiu-Shen (VerfasserIn)
Weitere Verfasser: Song, Yi-Zhe, Aodha, Oisin Mac, Wu, Jianxin, Peng, Yuxin, Tang, Jinhui, Yang, Jian, Belongie, Serge
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM33290377X
003 DE-627
005 20231225220532.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3126648  |2 doi 
028 5 2 |a pubmed24n1109.xml 
035 |a (DE-627)NLM33290377X 
035 |a (NLM)34752384 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wei, Xiu-Shen  |e verfasserin  |4 aut 
245 1 0 |a Fine-Grained Image Analysis With Deep Learning  |b A Survey 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.11.2022 
500 |a Date Revised 19.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Fine-grained image analysis (FGIA) is a longstanding and fundamental problem in computer vision and pattern recognition, and underpins a diverse set of real-world applications. The task of FGIA targets analyzing visual objects from subordinate categories, e.g., species of birds or models of cars. The small inter-class and large intra-class variation inherent to fine-grained image analysis makes it a challenging problem. Capitalizing on advances in deep learning, in recent years we have witnessed remarkable progress in deep learning powered FGIA. In this paper we present a systematic survey of these advances, where we attempt to re-define and broaden the field of FGIA by consolidating two fundamental fine-grained research areas - fine-grained image recognition and fine-grained image retrieval. In addition, we also review other key issues of FGIA, such as publicly available benchmark datasets and related domain-specific applications. We conclude by highlighting several research directions and open problems which need further exploration from the community 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Song, Yi-Zhe  |e verfasserin  |4 aut 
700 1 |a Aodha, Oisin Mac  |e verfasserin  |4 aut 
700 1 |a Wu, Jianxin  |e verfasserin  |4 aut 
700 1 |a Peng, Yuxin  |e verfasserin  |4 aut 
700 1 |a Tang, Jinhui  |e verfasserin  |4 aut 
700 1 |a Yang, Jian  |e verfasserin  |4 aut 
700 1 |a Belongie, Serge  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 12 vom: 09. Dez., Seite 8927-8948  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:12  |g day:09  |g month:12  |g pages:8927-8948 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3126648  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 12  |b 09  |c 12  |h 8927-8948