|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM33290377X |
003 |
DE-627 |
005 |
20231225220532.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2021.3126648
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1109.xml
|
035 |
|
|
|a (DE-627)NLM33290377X
|
035 |
|
|
|a (NLM)34752384
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wei, Xiu-Shen
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Fine-Grained Image Analysis With Deep Learning
|b A Survey
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 09.11.2022
|
500 |
|
|
|a Date Revised 19.11.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Fine-grained image analysis (FGIA) is a longstanding and fundamental problem in computer vision and pattern recognition, and underpins a diverse set of real-world applications. The task of FGIA targets analyzing visual objects from subordinate categories, e.g., species of birds or models of cars. The small inter-class and large intra-class variation inherent to fine-grained image analysis makes it a challenging problem. Capitalizing on advances in deep learning, in recent years we have witnessed remarkable progress in deep learning powered FGIA. In this paper we present a systematic survey of these advances, where we attempt to re-define and broaden the field of FGIA by consolidating two fundamental fine-grained research areas - fine-grained image recognition and fine-grained image retrieval. In addition, we also review other key issues of FGIA, such as publicly available benchmark datasets and related domain-specific applications. We conclude by highlighting several research directions and open problems which need further exploration from the community
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Song, Yi-Zhe
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Aodha, Oisin Mac
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Jianxin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Peng, Yuxin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tang, Jinhui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Jian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Belongie, Serge
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 44(2022), 12 vom: 09. Dez., Seite 8927-8948
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:44
|g year:2022
|g number:12
|g day:09
|g month:12
|g pages:8927-8948
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2021.3126648
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 44
|j 2022
|e 12
|b 09
|c 12
|h 8927-8948
|