Low-Light Image and Video Enhancement Using Deep Learning : A Survey

Low-light image enhancement (LLIE) aims at improving the perception or interpretability of an image captured in an environment with poor illumination. Recent advances in this area are dominated by deep learning-based solutions, where many learning strategies, network structures, loss functions, trai...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 12 vom: 09. Dez., Seite 9396-9416
1. Verfasser: Li, Chongyi (VerfasserIn)
Weitere Verfasser: Guo, Chunle, Han, Linghao, Jiang, Jun, Cheng, Ming-Ming, Gu, Jinwei, Loy, Chen Change
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM332903745
003 DE-627
005 20231225220532.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3126387  |2 doi 
028 5 2 |a pubmed24n1109.xml 
035 |a (DE-627)NLM332903745 
035 |a (NLM)34752382 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Chongyi  |e verfasserin  |4 aut 
245 1 0 |a Low-Light Image and Video Enhancement Using Deep Learning  |b A Survey 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Low-light image enhancement (LLIE) aims at improving the perception or interpretability of an image captured in an environment with poor illumination. Recent advances in this area are dominated by deep learning-based solutions, where many learning strategies, network structures, loss functions, training data, etc. have been employed. In this paper, we provide a comprehensive survey to cover various aspects ranging from algorithm taxonomy to unsolved open issues. To examine the generalization of existing methods, we propose a low-light image and video dataset, in which the images and videos are taken by different mobile phones' cameras under diverse illumination conditions. Besides, for the first time, we provide a unified online platform that covers many popular LLIE methods, of which the results can be produced through a user-friendly web interface. In addition to qualitative and quantitative evaluation of existing methods on publicly available and our proposed datasets, we also validate their performance in face detection in the dark. This survey together with the proposed dataset and online platform could serve as a reference source for future study and promote the development of this research field. The proposed platform and dataset as well as the collected methods, datasets, and evaluation metrics are publicly available and will be regularly updated. Project page: https://www.mmlab-ntu.com/project/lliv_survey/index.html 
650 4 |a Journal Article 
700 1 |a Guo, Chunle  |e verfasserin  |4 aut 
700 1 |a Han, Linghao  |e verfasserin  |4 aut 
700 1 |a Jiang, Jun  |e verfasserin  |4 aut 
700 1 |a Cheng, Ming-Ming  |e verfasserin  |4 aut 
700 1 |a Gu, Jinwei  |e verfasserin  |4 aut 
700 1 |a Loy, Chen Change  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 12 vom: 09. Dez., Seite 9396-9416  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:12  |g day:09  |g month:12  |g pages:9396-9416 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3126387  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 12  |b 09  |c 12  |h 9396-9416