Ultrahigh Sensitive Au-Doped Silicon Nanomembrane Based Wearable Sensor Arrays for Continuous Skin Temperature Monitoring with High Precision

© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 4 vom: 13. Jan., Seite e2105865
Auteur principal: Sang, Mingyu (Auteur)
Autres auteurs: Kang, Kyowon, Zhang, Yue, Zhang, Haozhe, Kim, Kiho, Cho, Myeongki, Shin, Jongwoon, Hong, Jung-Hoon, Kim, Taemin, Lee, Shin Kyu, Yeo, Woon-Hong, Lee, Jung Woo, Lee, Taeyoon, Xu, Baoxing, Yu, Ki Jun
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article epidermal electronics gold-doped silicon nanomembranes high-precision thermal monitoring Polymers Gold 7440-57-5 Silicon Z4152N8IUI
LEADER 01000caa a22002652c 4500
001 NLM332888827
003 DE-627
005 20250302160303.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202105865  |2 doi 
028 5 2 |a pubmed25n1109.xml 
035 |a (DE-627)NLM332888827 
035 |a (NLM)34750868 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sang, Mingyu  |e verfasserin  |4 aut 
245 1 0 |a Ultrahigh Sensitive Au-Doped Silicon Nanomembrane Based Wearable Sensor Arrays for Continuous Skin Temperature Monitoring with High Precision 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.02.2022 
500 |a Date Revised 07.02.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a Monitoring the body temperature with high accuracy provides a fast, facile, yet powerful route about the human body in a wide range of health information standards. Here, the first ever ultrasensitive and stretchable gold-doped silicon nanomembrane (Au-doped SiNM) epidermal temperature sensor array is introduced. The ultrasensitivity is achieved by shifting freeze-out region to intrinsic region in carrier density and modulation of fermi energy level of p-type SiNM through the development of a novel gold-doping strategy. The Au-doped SiNM is readily transferred onto an ultrathin polymer layer with a well-designed serpentine mesh structure, capable of being utilized as an epidermal temperature sensor array. Measurements in vivo and in vitro show temperature coefficient of resistance as high as -37270.72 ppm °C-1 , 22 times higher than existing metal-based temperature sensors with similar structures, and one of the highest thermal sensitivity among the inorganic material based temperature sensors. Applications in the continuous monitoring of body temperature and respiration rate during exercising are demonstrated with a successful capture of information. This work lays a foundation for monitoring body temperature, potentially useful for precision diagnosis (e.g., continuous monitoring body temperature in coronavirus disease 2019 cases) and management of disease relevance to body temperature in healthcare 
650 4 |a Journal Article 
650 4 |a epidermal electronics 
650 4 |a gold-doped silicon nanomembranes 
650 4 |a high-precision thermal monitoring 
650 7 |a Polymers  |2 NLM 
650 7 |a Gold  |2 NLM 
650 7 |a 7440-57-5  |2 NLM 
650 7 |a Silicon  |2 NLM 
650 7 |a Z4152N8IUI  |2 NLM 
700 1 |a Kang, Kyowon  |e verfasserin  |4 aut 
700 1 |a Zhang, Yue  |e verfasserin  |4 aut 
700 1 |a Zhang, Haozhe  |e verfasserin  |4 aut 
700 1 |a Kim, Kiho  |e verfasserin  |4 aut 
700 1 |a Cho, Myeongki  |e verfasserin  |4 aut 
700 1 |a Shin, Jongwoon  |e verfasserin  |4 aut 
700 1 |a Hong, Jung-Hoon  |e verfasserin  |4 aut 
700 1 |a Kim, Taemin  |e verfasserin  |4 aut 
700 1 |a Lee, Shin Kyu  |e verfasserin  |4 aut 
700 1 |a Yeo, Woon-Hong  |e verfasserin  |4 aut 
700 1 |a Lee, Jung Woo  |e verfasserin  |4 aut 
700 1 |a Lee, Taeyoon  |e verfasserin  |4 aut 
700 1 |a Xu, Baoxing  |e verfasserin  |4 aut 
700 1 |a Yu, Ki Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 4 vom: 13. Jan., Seite e2105865  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:34  |g year:2022  |g number:4  |g day:13  |g month:01  |g pages:e2105865 
856 4 0 |u http://dx.doi.org/10.1002/adma.202105865  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 4  |b 13  |c 01  |h e2105865