Adaptive Graph Auto-Encoder for General Data Clustering

Graph-based clustering plays an important role in the clustering area. Recent studies about graph neural networks (GNN) have achieved impressive success on graph-type data. However, in general clustering tasks, the graph structure of data does not exist such that GNN can not be applied to clustering...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 12 vom: 08. Dez., Seite 9725-9732
1. Verfasser: Li, Xuelong (VerfasserIn)
Weitere Verfasser: Zhang, Hongyuan, Zhang, Rui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM332865134
003 DE-627
005 20231225220445.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3125687  |2 doi 
028 5 2 |a pubmed24n1109.xml 
035 |a (DE-627)NLM332865134 
035 |a (NLM)34748479 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Xuelong  |e verfasserin  |4 aut 
245 1 0 |a Adaptive Graph Auto-Encoder for General Data Clustering 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Graph-based clustering plays an important role in the clustering area. Recent studies about graph neural networks (GNN) have achieved impressive success on graph-type data. However, in general clustering tasks, the graph structure of data does not exist such that GNN can not be applied to clustering directly and the strategy to construct a graph is crucial for performance. Therefore, how to extend GNN into general clustering tasks is an attractive problem. In this paper, we propose a graph auto-encoder for general data clustering, AdaGAE, which constructs the graph adaptively according to the generative perspective of graphs. The adaptive process is designed to induce the model to exploit the high-level information behind data and utilize the non-euclidean structure sufficiently. Importantly, we find that the simple update of the graph will result in severe degeneration, which can be concluded as better reconstruction means worse update. We provide rigorous analysis theoretically and empirically. Then we further design a novel mechanism to avoid the collapse. Via extending the generative graph models to general type data, a graph auto-encoder with a novel decoder is devised and the weighted graphs can be also applied to GNN. AdaGAE performs well and stably in different scale and type datasets. Besides, it is insensitive to the initialization of parameters and requires no pretraining 
650 4 |a Journal Article 
700 1 |a Zhang, Hongyuan  |e verfasserin  |4 aut 
700 1 |a Zhang, Rui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 12 vom: 08. Dez., Seite 9725-9732  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:12  |g day:08  |g month:12  |g pages:9725-9732 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3125687  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 12  |b 08  |c 12  |h 9725-9732