AvatarMe++ : Facial Shape and BRDF Inference With Photorealistic Rendering-Aware GANs

Over the last years, with the advent of Generative Adversarial Networks (GANs), many face analysis tasks have accomplished astounding performance, with applications including, but not limited to, face generation and 3D face reconstruction from a single "in-the-wild" image. Nevertheless, to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 12 vom: 02. Dez., Seite 9269-9284
1. Verfasser: Lattas, Alexandros (VerfasserIn)
Weitere Verfasser: Moschoglou, Stylianos, Ploumpis, Stylianos, Gecer, Baris, Ghosh, Abhijeet, Zafeiriou, Stefanos
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM33286510X
003 DE-627
005 20231225220445.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3125598  |2 doi 
028 5 2 |a pubmed24n1109.xml 
035 |a (DE-627)NLM33286510X 
035 |a (NLM)34748477 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lattas, Alexandros  |e verfasserin  |4 aut 
245 1 0 |a AvatarMe++  |b Facial Shape and BRDF Inference With Photorealistic Rendering-Aware GANs 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.11.2022 
500 |a Date Revised 22.12.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Over the last years, with the advent of Generative Adversarial Networks (GANs), many face analysis tasks have accomplished astounding performance, with applications including, but not limited to, face generation and 3D face reconstruction from a single "in-the-wild" image. Nevertheless, to the best of our knowledge, there is no method which can produce render-ready high-resolution 3D faces from "in-the-wild" images and this can be attributed to the: (a) scarcity of available data for training, and (b) lack of robust methodologies that can successfully be applied on very high-resolution data. In this paper, we introduce the first method that is able to reconstruct photorealistic render-ready 3D facial geometry and BRDF from a single "in-the-wild" image. To achieve this, we capture a large dataset of facial shape and reflectance, which we have made public. Moreover, we define a fast and photorealistic differentiable rendering methodology with accurate facial skin diffuse and specular reflection, self-occlusion and subsurface scattering approximation. With this, we train a network that disentangles the facial diffuse and specular reflectance components from a mesh and texture with baked illumination, scanned or reconstructed with a 3DMM fitting method. As we demonstrate in a series of qualitative and quantitative experiments, our method outperforms the existing arts by a significant margin and reconstructs authentic, 4K by 6K-resolution 3D faces from a single low-resolution image, that are ready to be rendered in various applications and bridge the uncanny valley 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Moschoglou, Stylianos  |e verfasserin  |4 aut 
700 1 |a Ploumpis, Stylianos  |e verfasserin  |4 aut 
700 1 |a Gecer, Baris  |e verfasserin  |4 aut 
700 1 |a Ghosh, Abhijeet  |e verfasserin  |4 aut 
700 1 |a Zafeiriou, Stefanos  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 12 vom: 02. Dez., Seite 9269-9284  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:12  |g day:02  |g month:12  |g pages:9269-9284 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3125598  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 12  |b 02  |c 12  |h 9269-9284