CIFDock : A novel CHARMM-based flexible receptor-flexible ligand docking protocol

© 2021 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 43(2022), 2 vom: 15. Jan., Seite 84-95
1. Verfasser: Vankayala, Sai L (VerfasserIn)
Weitere Verfasser: Warrensford, Luke C, Pittman, Amanda R, Pollard, Benjamin C, Kearns, Fiona L, Larkin, Joseph D, Woodcock, H Lee
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. CHARMM clustering force field induced fit docking ligand sampling Ligands mehr... Proteins Water 059QF0KO0R
LEADER 01000caa a22002652c 4500
001 NLM332795268
003 DE-627
005 20250302155139.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26759  |2 doi 
028 5 2 |a pubmed25n1109.xml 
035 |a (DE-627)NLM332795268 
035 |a (NLM)34741467 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Vankayala, Sai L  |e verfasserin  |4 aut 
245 1 0 |a CIFDock  |b A novel CHARMM-based flexible receptor-flexible ligand docking protocol 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.03.2022 
500 |a Date Revised 03.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 Wiley Periodicals LLC. 
520 |a Docking studies play a critical role in the current workflow of drug discovery. However, limitations may often arise through factors including inadequate ligand sampling, a lack of protein flexibility, scoring function inadequacies (e.g., due to metals, co-factors, etc.), and difficulty in retaining explicit water molecules. Herein, we present a novel CHARMM-based induced fit docking (CIFDock) workflow that can circumvent these limitations by employing all-atom force fields coupled to enhanced sampling molecular dynamics procedures. Self-guided Langevin dynamics simulations are used to effectively sample relevant ligand conformations, side chain orientations, crystal water positions, and active site residue motion. Protein flexibility is further enhanced by dynamic sampling of side chain orientations using an expandable rotamer library. Steps in the procedure consisting of fixing individual components (e.g., the ligand) while sampling the other components (e.g., the residues in the active site of the protein) allow for the complex to adapt to conformational changes. Ultimately, all components of the complex-the protein, ligand, and waters-are sampled simultaneously and unrestrained with SGLD to capture any induced fit effects. This modular flexible docking procedure is automated using CHARMM scripting, interfaced with SLURM array processing, and parallelized to use the desired number of processors. We validated the CIFDock procedure by performing cross-docking studies using a data set comprised of 21 pharmaceutically relevant proteins. Five variants of the CHARMM-based SWISSDOCK scoring functions were created to quantify the results of the final generated poses. Results obtained were comparable to, or in some cases improved upon, commercial docking program data 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a CHARMM 
650 4 |a clustering 
650 4 |a force field 
650 4 |a induced fit docking 
650 4 |a ligand sampling 
650 7 |a Ligands  |2 NLM 
650 7 |a Proteins  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
700 1 |a Warrensford, Luke C  |e verfasserin  |4 aut 
700 1 |a Pittman, Amanda R  |e verfasserin  |4 aut 
700 1 |a Pollard, Benjamin C  |e verfasserin  |4 aut 
700 1 |a Kearns, Fiona L  |e verfasserin  |4 aut 
700 1 |a Larkin, Joseph D  |e verfasserin  |4 aut 
700 1 |a Woodcock, H Lee  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 43(2022), 2 vom: 15. Jan., Seite 84-95  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnas 
773 1 8 |g volume:43  |g year:2022  |g number:2  |g day:15  |g month:01  |g pages:84-95 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26759  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2022  |e 2  |b 15  |c 01  |h 84-95