Joint Feature Disentanglement and Hallucination for Few-Shot Image Classification

Few-shot learning (FSL) refers to the learning task that generalizes from base to novel concepts with only few examples observed during training. One intuitive FSL approach is to hallucinate additional training samples for novel categories. While this is typically done by learning from a disjoint se...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 05., Seite 9245-9258
1. Verfasser: Lin, Chia-Ching (VerfasserIn)
Weitere Verfasser: Chu, Hsin-Li, Wang, Yu-Chiang Frank, Lei, Chin-Laung
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM332774481
003 DE-627
005 20231225220253.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3124322  |2 doi 
028 5 2 |a pubmed24n1109.xml 
035 |a (DE-627)NLM332774481 
035 |a (NLM)34739379 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lin, Chia-Ching  |e verfasserin  |4 aut 
245 1 0 |a Joint Feature Disentanglement and Hallucination for Few-Shot Image Classification 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.11.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Few-shot learning (FSL) refers to the learning task that generalizes from base to novel concepts with only few examples observed during training. One intuitive FSL approach is to hallucinate additional training samples for novel categories. While this is typically done by learning from a disjoint set of base categories with sufficient amount of training data, most existing works did not fully exploit the intra-class information from base categories, and thus there is no guarantee that the hallucinated data would represent the class of interest accordingly. In this paper, we propose Feature Disentanglement and Hallucination Network (FDH-Net), which jointly performs feature disentanglement and hallucination for FSL purposes. More specifically, our FDH-Net is able to disentangle input visual data into class-specific and appearance-specific features. With both data recovery and classification constraints, hallucination of image features for novel categories using appearance information extracted from base categories can be achieved. We perform extensive experiments on two fine-grained datasets (CUB and FLO) and two coarse-grained ones (mini-ImageNet and CIFAR-100). The results confirm that our framework performs favorably against state-of-the-art metric-learning and hallucination-based FSL models 
650 4 |a Journal Article 
700 1 |a Chu, Hsin-Li  |e verfasserin  |4 aut 
700 1 |a Wang, Yu-Chiang Frank  |e verfasserin  |4 aut 
700 1 |a Lei, Chin-Laung  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 05., Seite 9245-9258  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:05  |g pages:9245-9258 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3124322  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 05  |h 9245-9258