Deep Unsupervised Active Learning via Matrix Sketching

Most existing unsupervised active learning methods aim at minimizing the data reconstruction loss by using the linear models to choose representative samples for manually labeling in an unsupervised setting. Thus these methods often fail in modelling data with complex non-linear structure. To addres...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 05., Seite 9280-9293
1. Verfasser: Li, Changsheng (VerfasserIn)
Weitere Verfasser: Li, Rongqing, Yuan, Ye, Wang, Guoren, Xu, Dong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM332774473
003 DE-627
005 20250302154910.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3124317  |2 doi 
028 5 2 |a pubmed25n1109.xml 
035 |a (DE-627)NLM332774473 
035 |a (NLM)34739378 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Changsheng  |e verfasserin  |4 aut 
245 1 0 |a Deep Unsupervised Active Learning via Matrix Sketching 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.12.2021 
500 |a Date Revised 31.05.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Most existing unsupervised active learning methods aim at minimizing the data reconstruction loss by using the linear models to choose representative samples for manually labeling in an unsupervised setting. Thus these methods often fail in modelling data with complex non-linear structure. To address this issue, we propose a new deep unsupervised Active Learning method for classification tasks, inspired by the idea of Matrix Sketching, called ALMS. Specifically, ALMS leverages a deep auto-encoder to embed data into a latent space, and then describes all the embedded data with a small size sketch to summarize the major characteristics of the data. In contrast to previous approaches that reconstruct the whole data matrix for selecting the representative samples, ALMS aims to select a representative subset of samples to well approximate the sketch, which can preserve the major information of data meanwhile significantly reducing the number of network parameters. This makes our algorithm alleviate the issue of model overfitting and readily cope with large datasets. Actually, the sketch provides a type of self-supervised signal to guide the learning of the model. Moreover, we propose to construct an auxiliary self-supervised task by classifying real/fake samples, in order to further improve the representation ability of the encoder. We thoroughly evaluate the performance of ALMS on both single-label and multi-label classification tasks, and the results demonstrate its superior performance against the state-of-the-art methods. The code can be found at https://github.com/lrq99/ALMS 
650 4 |a Journal Article 
700 1 |a Li, Rongqing  |e verfasserin  |4 aut 
700 1 |a Yuan, Ye  |e verfasserin  |4 aut 
700 1 |a Wang, Guoren  |e verfasserin  |4 aut 
700 1 |a Xu, Dong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 05., Seite 9280-9293  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:30  |g year:2021  |g day:05  |g pages:9280-9293 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3124317  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 05  |h 9280-9293