DS-UI : Dual-Supervised Mixture of Gaussian Mixture Models for Uncertainty Inference in Image Recognition

This paper proposes a dual-supervised uncertainty inference (DS-UI) framework for improving Bayesian estimation-based UI in DNN-based image recognition. In the DS-UI, we combine the classifier of a DNN, i.e., the last fully-connected (FC) layer, with a mixture of Gaussian mixture models (MoGMM) to o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 05., Seite 9208-9219
1. Verfasser: Xie, Jiyang (VerfasserIn)
Weitere Verfasser: Ma, Zhanyu, Xue, Jing-Hao, Zhang, Guoqiang, Sun, Jian, Zheng, Yinhe, Guo, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM332774457
003 DE-627
005 20231225220253.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3123555  |2 doi 
028 5 2 |a pubmed24n1109.xml 
035 |a (DE-627)NLM332774457 
035 |a (NLM)34739376 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xie, Jiyang  |e verfasserin  |4 aut 
245 1 0 |a DS-UI  |b Dual-Supervised Mixture of Gaussian Mixture Models for Uncertainty Inference in Image Recognition 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.11.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper proposes a dual-supervised uncertainty inference (DS-UI) framework for improving Bayesian estimation-based UI in DNN-based image recognition. In the DS-UI, we combine the classifier of a DNN, i.e., the last fully-connected (FC) layer, with a mixture of Gaussian mixture models (MoGMM) to obtain an MoGMM-FC layer. Unlike existing UI methods for DNNs, which only calculate the means or modes of the DNN outputs' distributions, the proposed MoGMM-FC layer acts as a probabilistic interpreter for the features that are inputs of the classifier to directly calculate the probabilities of them for the DS-UI. In addition, we propose a dual-supervised stochastic gradient-based variational Bayes (DS-SGVB) algorithm for the MoGMM-FC layer optimization. Unlike conventional SGVB and optimization algorithms in other UI methods, the DS-SGVB not only models the samples in the specific class for each Gaussian mixture model (GMM) in the MoGMM, but also considers the negative samples from other classes for the GMM to reduce the intra-class distances and enlarge the inter-class margins simultaneously for enhancing the learning ability of the MoGMM-FC layer in the DS-UI. Experimental results show the DS-UI outperforms the state-of-the-art UI methods in misclassification detection. We further evaluate the DS-UI in open-set out-of-domain/-distribution detection and find statistically significant improvements. Visualizations of the feature spaces demonstrate the superiority of the DS-UI. Codes are available at https://github.com/PRIS-CV/DS-UI 
650 4 |a Journal Article 
700 1 |a Ma, Zhanyu  |e verfasserin  |4 aut 
700 1 |a Xue, Jing-Hao  |e verfasserin  |4 aut 
700 1 |a Zhang, Guoqiang  |e verfasserin  |4 aut 
700 1 |a Sun, Jian  |e verfasserin  |4 aut 
700 1 |a Zheng, Yinhe  |e verfasserin  |4 aut 
700 1 |a Guo, Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 05., Seite 9208-9219  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:05  |g pages:9208-9219 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3123555  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 05  |h 9208-9219