|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM332772152 |
003 |
DE-627 |
005 |
20231225220250.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202107947
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1109.xml
|
035 |
|
|
|a (DE-627)NLM332772152
|
035 |
|
|
|a (NLM)34739143
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Hao
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Graphitic Aza-Fused π-Conjugated Networks
|b Construction, Engineering, and Task-Specific Applications
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 08.04.2022
|
500 |
|
|
|a Date Revised 08.04.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a 2D π-conjugated networks linked by aza-fused units represent a pivotal category of graphitic materials with stacked nanosheet architectures. Extensive efforts have been directed at their fabrication and application since the discovery of covalent triazine frameworks (CTFs). Besides the triazine cores, tricycloquinazoline and hexaazatriphenylene linkages are further introduced to tailor the structures and properties. Diverse related materials have been developed rapidly, and a thorough outlook is necessitated to unveil the structure-property-application relationships across multiple subcategories, which is pivotal to guide the design and fabrication toward enhanced task-specific performance. Herein, the structure types and development of related materials including CTFs, covalent quinazoline networks, and hexaazatriphenylene networks, are introduced. Advanced synthetic strategies coupled with characterization techniques provide powerful tools to engineer the properties and tune the associated behaviors in corresponding applications. Case studies in the areas of gas adsorption, membrane-based separation, thermo-/electro-/photocatalysis, and energy storage are then addressed, focusing on the correlation between structure/property engineering and optimization of the corresponding performance, particularly the preferred features and strategies in each specific field. In the last section, the underlying challenges and opportunities in construction and application of this emerging and promising material category are discussed
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a catalysis
|
650 |
|
4 |
|a covalent quinazoline networks
|
650 |
|
4 |
|a covalent triazine frameworks
|
650 |
|
4 |
|a energy storage
|
650 |
|
4 |
|a hexaazatrinaphthalene networks
|
650 |
|
7 |
|a Triazines
|2 NLM
|
650 |
|
7 |
|a Graphite
|2 NLM
|
650 |
|
7 |
|a 7782-42-5
|2 NLM
|
700 |
1 |
|
|a Suo, Xian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Zhenzhen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dai, Sheng
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 14 vom: 19. Apr., Seite e2107947
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:14
|g day:19
|g month:04
|g pages:e2107947
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202107947
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 14
|b 19
|c 04
|h e2107947
|