A novel approach to partitioning evapotranspiration into evaporation and transpiration in flooded ecosystems

© 2021 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 28(2022), 3 vom: 04. Feb., Seite 990-1007
1. Verfasser: Eichelmann, Elke (VerfasserIn)
Weitere Verfasser: Mantoani, Mauricio C, Chamberlain, Samuel D, Hemes, Kyle S, Oikawa, Patricia Y, Szutu, Daphne, Valach, Alex, Verfaillie, Joseph, Baldocchi, Dennis D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article artificial neural networks eddy covariance latent energy machine learning terrestrial water cycle vapor pressure deficit wetlands Water 059QF0KO0R
LEADER 01000caa a22002652c 4500
001 NLM332738272
003 DE-627
005 20250302154446.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.15974  |2 doi 
028 5 2 |a pubmed25n1108.xml 
035 |a (DE-627)NLM332738272 
035 |a (NLM)34735731 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Eichelmann, Elke  |e verfasserin  |4 aut 
245 1 2 |a A novel approach to partitioning evapotranspiration into evaporation and transpiration in flooded ecosystems 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.02.2022 
500 |a Date Revised 23.02.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 John Wiley & Sons Ltd. 
520 |a Reliable partitioning of micrometeorologically measured evapotranspiration (ET) into evaporation (E) and transpiration (T) would greatly enhance our understanding of the water cycle and its response to climate change related shifts in local-to-regional climate conditions and rising global levels of vapor pressure deficit (VPD). While some methods on ET partitioning have been developed, their underlying assumptions make them difficult to apply more generally, especially in sites with large contributions of E. Here, we report a novel ET partitioning method using artificial neural networks (ANNs) in combination with a range of environmental input variables to predict daytime E from nighttime ET measurements. The study uses eddy covariance data from four restored wetlands in the Sacramento-San Joaquin Delta, California, USA, as well as leaf-level T data for validation. The four wetlands vary in their vegetation make-up and structure, representing a range of ET conditions. The ANNs were built with increasing complexity by adding the input variable that resulted in the next highest average value of model testing R2 across all sites. The order of variable inclusion (and importance) was: VPD > gap-filled sensible heat flux (H_gf) > air temperature (Tair ) > friction velocity (u∗ ) > other variables. The model using VPD, H_gf, Tair , and u∗ showed the best performance during validation with independent data and had a mean testing R2  value of 0.853 (averaged across all sites, range from 0.728 to 0.910). In comparison to other methods, our ANN method generated T/ET partitioning results which were more consistent with CO2 exchange data especially for more heterogeneous sites with large E contributions. Our method improves the understanding of T/ET partitioning. While it may be particularly suited to flooded ecosystems, it can also improve T/ET partitioning in other systems, increasing our knowledge of the global water cycle and ecosystem functioning 
650 4 |a Journal Article 
650 4 |a artificial neural networks 
650 4 |a eddy covariance 
650 4 |a latent energy 
650 4 |a machine learning 
650 4 |a terrestrial water cycle 
650 4 |a vapor pressure deficit 
650 4 |a wetlands 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
700 1 |a Mantoani, Mauricio C  |e verfasserin  |4 aut 
700 1 |a Chamberlain, Samuel D  |e verfasserin  |4 aut 
700 1 |a Hemes, Kyle S  |e verfasserin  |4 aut 
700 1 |a Oikawa, Patricia Y  |e verfasserin  |4 aut 
700 1 |a Szutu, Daphne  |e verfasserin  |4 aut 
700 1 |a Valach, Alex  |e verfasserin  |4 aut 
700 1 |a Verfaillie, Joseph  |e verfasserin  |4 aut 
700 1 |a Baldocchi, Dennis D  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 28(2022), 3 vom: 04. Feb., Seite 990-1007  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnas 
773 1 8 |g volume:28  |g year:2022  |g number:3  |g day:04  |g month:02  |g pages:990-1007 
856 4 0 |u http://dx.doi.org/10.1111/gcb.15974  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 3  |b 04  |c 02  |h 990-1007