|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM332725537 |
003 |
DE-627 |
005 |
20231225220151.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202105156
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1109.xml
|
035 |
|
|
|a (DE-627)NLM332725537
|
035 |
|
|
|a (NLM)34734436
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wu, Ji
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Tunable Supramolecular Cavities Molecularly Homogenized in Polymer Membranes for Ultraefficient Precombustion CO2 Capture
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 21.01.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a Processable molecular-sieving membranes are important materials for realizing energy-efficient precombustion CO2 capture during industrial-scale hydrogen production. However, the promising design of mixed matrix membranes (MMMs) that aims to integrate the molecular-sieving properties of nanoporous architectures with industrial processable polymers still faces performance and fabrication issues due to the formation of segregated nanofiller domains in their polymer matrices. Here, an unconventional nanocomposite membrane design is proposed using soluble organic macrocyclic cavitands (OMCs) with tunable open cavity sizes that not only mitigate the formation the discrete nanofiller phases but also deliver distinct molecular-sieving separations. The versatile organic-solvent solubility coupled with highly interactive functionalities of OMCs allows them to obtain molecularly homogeneous mixing with matrix polymers and form only one integral continuous phase crucial to the robust processability of polymers. A series of polybenzimidazole-based molecularly mixed composite membranes (MMCMs) are fabricated via the incorporation of a soluble and thermally stable OMC choice, sulfocalixarenes, with various cavity sizes. These membranes achieve outstanding high-temperature mixed-gas H2 /CO2 separation performances comparable with several state-of-the-art molecular-sieving membranes owing to effective size-sieving gas passages through the open or partially-intruded supramolecular cavities. The broadly tunable structures and functionalities of OMCs would make their MMCMs attractive for other energy-intensive molecular separations
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a hydrogen production
|
650 |
|
4 |
|a membrane CO2 capture
|
650 |
|
4 |
|a mixed matrix membranes
|
650 |
|
4 |
|a molecularly homogeneous nanocomposites
|
650 |
|
4 |
|a supramolecular cavitands
|
650 |
|
4 |
|a tunable transport properties
|
700 |
1 |
|
|a Liang, Can Zeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Naderi, Ali
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chung, Tai-Shung
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 3 vom: 10. Jan., Seite e2105156
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:3
|g day:10
|g month:01
|g pages:e2105156
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202105156
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 3
|b 10
|c 01
|h e2105156
|