Pixel-Oriented Adaptive Apodization for Plane-Wave Imaging Based on Recovery of the Complete Dataset

In theory, coherent plane-wave compounding (CPWC) enables ultrafast ultrasound imaging while maintaining a high imaging quality that is comparable to conventional B-mode imaging based on focused beam transmissions. However, in practice, due to the imperfect synthetization of transmit focusing (e.g.,...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 69(2022), 2 vom: 02. Feb., Seite 512-522
Auteur principal: You, Qi (Auteur)
Autres auteurs: Dong, Zhijie, Lowerison, Matthew R, Song, Pengfei
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Sujets:Journal Article Research Support, N.I.H., Extramural
LEADER 01000caa a22002652c 4500
001 NLM332652203
003 DE-627
005 20250302153440.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2021.3124821  |2 doi 
028 5 2 |a pubmed25n1108.xml 
035 |a (DE-627)NLM332652203 
035 |a (NLM)34727029 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a You, Qi  |e verfasserin  |4 aut 
245 1 0 |a Pixel-Oriented Adaptive Apodization for Plane-Wave Imaging Based on Recovery of the Complete Dataset 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.03.2022 
500 |a Date Revised 01.04.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In theory, coherent plane-wave compounding (CPWC) enables ultrafast ultrasound imaging while maintaining a high imaging quality that is comparable to conventional B-mode imaging based on focused beam transmissions. However, in practice, due to the imperfect synthetization of transmit focusing (e.g., heterogeneous speed of sound in tissue and limited range of steering angle), CPWC suffers from a variety of imaging artifacts resulting from side lobes, grating lobes, and axial lobes. This study focuses on addressing the issues of axial lobes for CPWC, which constitutes an important source of clutter that leads to the degradation of contrast ratio and contrast-to-noise ratio (CR and CNR) of CPWC. We first investigated the source of the axial lobes based on plane-wave propagation and the delay-and-sum (DAS) beamforming. We then proposed a new method that is based on pixel-oriented adaptive apodization (POAA) to eliminate the axial lobes throughout the entire field of view (FOV). POAA was first validated in a simulation study, followed by in vitro phantom experiments and an in vivo case study on a carotid artery from a healthy volunteer. In the simulation study, suppression of axial lobes by 120 dB was observed from wire targets, and an improvement of CNR by up to 60% was found in a cyst-mimicking digital phantom. In the phantom experiment, POAA showed an improvement in CNR by around 20% over conventional methods. The effectiveness of axial lobe suppression was finally demonstrated in vivo, where POAA showed a substantial suppression of clutters throughout the entire FOV 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
700 1 |a Dong, Zhijie  |e verfasserin  |4 aut 
700 1 |a Lowerison, Matthew R  |e verfasserin  |4 aut 
700 1 |a Song, Pengfei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 69(2022), 2 vom: 02. Feb., Seite 512-522  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnas 
773 1 8 |g volume:69  |g year:2022  |g number:2  |g day:02  |g month:02  |g pages:512-522 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2021.3124821  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 69  |j 2022  |e 2  |b 02  |c 02  |h 512-522