|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM332645134 |
003 |
DE-627 |
005 |
20231225220006.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202104405
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1108.xml
|
035 |
|
|
|a (DE-627)NLM332645134
|
035 |
|
|
|a (NLM)34726305
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Nai, Jianwei
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Construction of Ni(CN)2 /NiSe2 Heterostructures by Stepwise Topochemical Pathways for Efficient Electrocatalytic Oxygen Evolution
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 27.01.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a Exploiting effective electrocatalysts based on elaborate heterostructures for the oxygen evolution reaction (OER) has been considered as a promising strategy for boosting water splitting efficiency to produce the clean energy-hydrogen. However, constructing catalytically active heterostructures with novel composition and architecture remains poorly developed due to the synthetic challenge. In this work, it is demonstrated that unique Ni(CN)2 /NiSe2 heterostructures, composed of single-crystalline Ni(CN)2 nanoplates surrounded by crystallographically aligned NiSe2 nanosatellites, can be created from nickel-based Hofmann-type coordination polymers through stepwise topochemical pathways. When employed as the OER electrocatalyst, the Ni(CN)2 /NiSe2 heterostructures show enhanced performance, which could be attributed to optimized geometric and electronic structures of the catalytic sites endowed by the synergy between the two components. This work demonstrates a rational synthetic route for creating a novel Ni-based OER electrocatalyst that possesses nanoscale heterostructure, whose composition, spatial organization, and interface configuration can be finely manipulated
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a electrocatalysts
|
650 |
|
4 |
|a heterostructures
|
650 |
|
4 |
|a nanostructures
|
650 |
|
4 |
|a oxygen evolution reaction
|
650 |
|
4 |
|a topochemical reactions
|
700 |
1 |
|
|a Xu, Xiangzhen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xie, Qifan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lu, Gongxun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Yao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Luan, Deyan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tao, Xinyong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lou, Xiong Wen David
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 4 vom: 05. Jan., Seite e2104405
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:4
|g day:05
|g month:01
|g pages:e2104405
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202104405
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 4
|b 05
|c 01
|h e2104405
|