Pyramidal Semantic Correspondence Networks

This paper presents a deep architecture, called pyramidal semantic correspondence networks (PSCNet), that estimates locally-varying affine transformation fields across semantically similar images. To deal with large appearance and shape variations that commonly exist among different instances within...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 12 vom: 02. Dez., Seite 9102-9118
1. Verfasser: Jeon, Sangryul (VerfasserIn)
Weitere Verfasser: Kim, Seungryong, Min, Dongbo, Sohn, Kwanghoon
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM332530361
003 DE-627
005 20231225215747.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3123679  |2 doi 
028 5 2 |a pubmed24n1108.xml 
035 |a (DE-627)NLM332530361 
035 |a (NLM)34714738 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jeon, Sangryul  |e verfasserin  |4 aut 
245 1 0 |a Pyramidal Semantic Correspondence Networks 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents a deep architecture, called pyramidal semantic correspondence networks (PSCNet), that estimates locally-varying affine transformation fields across semantically similar images. To deal with large appearance and shape variations that commonly exist among different instances within the same object category, we leverage a pyramidal model where the affine transformation fields are progressively estimated in a coarse-to-fine manner so that the smoothness constraint is naturally imposed. Different from the previous methods which directly estimate global or local deformations, our method first starts to estimate the transformation from an entire image and then progressively increases the degree of freedom of the transformation by dividing coarse cell into finer ones. To this end, we propose two spatial pyramid models by dividing an image in a form of quad-tree rectangles or into multiple semantic elements of an object. Additionally, to overcome the limitation of insufficient training data, a novel weakly-supervised training scheme is introduced that generates progressively evolving supervisions through the spatial pyramid models by leveraging a correspondence consistency across image pairs. Extensive experimental results on various benchmarks including TSS, Proposal Flow-WILLOW, Proposal Flow-PASCAL, Caltech-101, and SPair-71k demonstrate that the proposed method outperforms the lastest methods for dense semantic correspondence 
650 4 |a Journal Article 
700 1 |a Kim, Seungryong  |e verfasserin  |4 aut 
700 1 |a Min, Dongbo  |e verfasserin  |4 aut 
700 1 |a Sohn, Kwanghoon  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 12 vom: 02. Dez., Seite 9102-9118  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:12  |g day:02  |g month:12  |g pages:9102-9118 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3123679  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 12  |b 02  |c 12  |h 9102-9118