Oligoethylene Glycol Side Chains Increase Charge Generation in Organic Semiconductor Nanoparticles for Enhanced Photocatalytic Hydrogen Evolution

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 22 vom: 29. Juni, Seite e2105007
1. Verfasser: Kosco, Jan (VerfasserIn)
Weitere Verfasser: Gonzalez-Carrero, Soranyel, Howells, Calvyn T, Zhang, Weimin, Moser, Maximilian, Sheelamanthula, Rajendar, Zhao, Lingyun, Willner, Benjamin, Hidalgo, Tania C, Faber, Hendrik, Purushothaman, Balaji, Sachs, Michael, Cha, Hyojung, Sougrat, Rachid, Anthopoulos, Thomas D, Inal, Sahika, Durrant, James R, McCulloch, Iain
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article hydrogen nanoparticles organic semiconductors photocatalysts solar fuels
LEADER 01000naa a22002652 4500
001 NLM332528650
003 DE-627
005 20231225215745.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202105007  |2 doi 
028 5 2 |a pubmed24n1108.xml 
035 |a (DE-627)NLM332528650 
035 |a (NLM)34714562 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kosco, Jan  |e verfasserin  |4 aut 
245 1 0 |a Oligoethylene Glycol Side Chains Increase Charge Generation in Organic Semiconductor Nanoparticles for Enhanced Photocatalytic Hydrogen Evolution 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.06.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Wiley-VCH GmbH. 
520 |a Organic semiconductor nanoparticles (NPs) composed of an electron donor/acceptor (D/A) semiconductor blend have recently emerged as an efficient class of hydrogen-evolution photocatalysts. It is demonstrated that using conjugated polymers functionalized with (oligo)ethylene glycol side chains in NP photocatalysts can greatly enhance their H2 -evolution efficiency compared to their nonglycolated analogues. The strategy is broadly applicable to a range of structurally diverse conjugated polymers. Transient spectroscopic studies show that glycolation facilitates charge generation even in the absence of a D/A heterojunction, and further suppresses both geminate and nongeminate charge recombination in D/A NPs. This results in a high yield of photogenerated charges with lifetimes long enough to efficiently drive ascorbic acid oxidation, which is correlated with greatly enhanced H2 -evolution rates in the glycolated NPs. Glycolation increases the relative permittivity of the semiconductors and facilitates water uptake. Together, these effects may increase the high-frequency relative permittivity inside the NPs sufficiently, to cause the observed suppression of exciton and charge recombination responsible for the high photocatalytic activities of the glycolated NPs 
650 4 |a Journal Article 
650 4 |a hydrogen 
650 4 |a nanoparticles 
650 4 |a organic semiconductors 
650 4 |a photocatalysts 
650 4 |a solar fuels 
700 1 |a Gonzalez-Carrero, Soranyel  |e verfasserin  |4 aut 
700 1 |a Howells, Calvyn T  |e verfasserin  |4 aut 
700 1 |a Zhang, Weimin  |e verfasserin  |4 aut 
700 1 |a Moser, Maximilian  |e verfasserin  |4 aut 
700 1 |a Sheelamanthula, Rajendar  |e verfasserin  |4 aut 
700 1 |a Zhao, Lingyun  |e verfasserin  |4 aut 
700 1 |a Willner, Benjamin  |e verfasserin  |4 aut 
700 1 |a Hidalgo, Tania C  |e verfasserin  |4 aut 
700 1 |a Faber, Hendrik  |e verfasserin  |4 aut 
700 1 |a Purushothaman, Balaji  |e verfasserin  |4 aut 
700 1 |a Sachs, Michael  |e verfasserin  |4 aut 
700 1 |a Cha, Hyojung  |e verfasserin  |4 aut 
700 1 |a Sougrat, Rachid  |e verfasserin  |4 aut 
700 1 |a Anthopoulos, Thomas D  |e verfasserin  |4 aut 
700 1 |a Inal, Sahika  |e verfasserin  |4 aut 
700 1 |a Durrant, James R  |e verfasserin  |4 aut 
700 1 |a McCulloch, Iain  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 22 vom: 29. Juni, Seite e2105007  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:22  |g day:29  |g month:06  |g pages:e2105007 
856 4 0 |u http://dx.doi.org/10.1002/adma.202105007  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 22  |b 29  |c 06  |h e2105007