Multi-Target Pan-Class Intrinsic Relevance Driven Model for Improving Semantic Segmentation in Autonomous Driving

At present, most semantic segmentation models rely on the excellent feature extraction capabilities of a deep learning network structure. Although these models can achieve excellent performance on multiple datasets, ways of refining the target main body segmentation and overcoming the performance li...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 9069-9084
1. Verfasser: Cai, Yingfeng (VerfasserIn)
Weitere Verfasser: Dai, Lei, Wang, Hai, Li, Zhixiong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM332483665
003 DE-627
005 20231225215650.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3122293  |2 doi 
028 5 2 |a pubmed24n1108.xml 
035 |a (DE-627)NLM332483665 
035 |a (NLM)34710044 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cai, Yingfeng  |e verfasserin  |4 aut 
245 1 0 |a Multi-Target Pan-Class Intrinsic Relevance Driven Model for Improving Semantic Segmentation in Autonomous Driving 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.11.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a At present, most semantic segmentation models rely on the excellent feature extraction capabilities of a deep learning network structure. Although these models can achieve excellent performance on multiple datasets, ways of refining the target main body segmentation and overcoming the performance limitation of deep learning networks are still a research focus. We discovered a pan-class intrinsic relevance phenomenon among targets that can link the targets cross-class. This cross-class strategy is different from the latest semantic segmentation model via context where targets are divided into an intra-class and inter-class. This paper proposes a model for refining the target main body segmentation using multi-target pan-class intrinsic relevance. The main contributions of the proposed model can be summarized as follows: a) The multi-target pan-class intrinsic relevance prior knowledge establishment (RPK-Est) module builds the prior knowledge of the intrinsic relevance to lay the foundation for the following extraction of the pan-class intrinsic relevance feature. b) The multi-target pan-class intrinsic relevance feature extraction (RF-Ext) module is designed to extract the pan-class intrinsic relevance feature based on the proposed multi-target node graph and graph convolution network. c) The multi-target pan-class intrinsic relevance feature integration (RF-Int) module is proposed to integrate the intrinsic relevance features and semantic features by a generative adversarial learning strategy at the gradient level, which can make intrinsic relevance features play a role in semantic segmentation. The proposed model achieved outstanding performance in semantic segmentation testing on four authoritative datasets compared to other state-of-the-art models 
650 4 |a Journal Article 
700 1 |a Dai, Lei  |e verfasserin  |4 aut 
700 1 |a Wang, Hai  |e verfasserin  |4 aut 
700 1 |a Li, Zhixiong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 9069-9084  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:9069-9084 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3122293  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 9069-9084