Deep High-Resolution Representation Learning for Cross-Resolution Person Re-Identification

Person re-identification (re-ID) tackles the problem of matching person images with the same identity from different cameras. In practical applications, due to the differences in camera performance and distance between cameras and persons of interest, captured person images usually have various reso...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 8913-8925
1. Verfasser: Zhang, Guoqing (VerfasserIn)
Weitere Verfasser: Ge, Yu, Dong, Zhicheng, Wang, Hao, Zheng, Yuhui, Chen, Shengyong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM332440184
003 DE-627
005 20231225215558.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3120054  |2 doi 
028 5 2 |a pubmed24n1108.xml 
035 |a (DE-627)NLM332440184 
035 |a (NLM)34705643 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Guoqing  |e verfasserin  |4 aut 
245 1 0 |a Deep High-Resolution Representation Learning for Cross-Resolution Person Re-Identification 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.11.2021 
500 |a Date Revised 01.11.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Person re-identification (re-ID) tackles the problem of matching person images with the same identity from different cameras. In practical applications, due to the differences in camera performance and distance between cameras and persons of interest, captured person images usually have various resolutions. This problem, named Cross-Resolution Person Re-identification, presents a great challenge for the accurate person matching. In this paper, we propose a Deep High-Resolution Pseudo-Siamese Framework (PS-HRNet) to solve the above problem. Specifically, we first improve the VDSR by introducing existing channel attention (CA) mechanism and harvest a new module, i.e., VDSR-CA, to restore the resolution of low-resolution images and make full use of the different channel information of feature maps. Then we reform the HRNet by designing a novel representation head, HRNet-ReID, to extract discriminating features. In addition, a pseudo-siamese framework is developed to reduce the difference of feature distributions between low-resolution images and high-resolution images. The experimental results on five cross-resolution person datasets verify the effectiveness of our proposed approach. Compared with the state-of-the-art methods, the proposed PS-HRNet improves the Rank-1 accuracy by 3.4%, 6.2%, 2.5%,1.1% and 4.2% on MLR-Market-1501, MLR-CUHK03, MLR-VIPeR, MLR-DukeMTMC-reID, and CAVIAR datasets, respectively, which demonstrates the superiority of our method in handling the Cross-Resolution Person Re-ID task. Our code is available at https://github.com/zhguoqing 
650 4 |a Journal Article 
700 1 |a Ge, Yu  |e verfasserin  |4 aut 
700 1 |a Dong, Zhicheng  |e verfasserin  |4 aut 
700 1 |a Wang, Hao  |e verfasserin  |4 aut 
700 1 |a Zheng, Yuhui  |e verfasserin  |4 aut 
700 1 |a Chen, Shengyong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 8913-8925  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:8913-8925 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3120054  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 8913-8925