Learn to Predict Sets Using Feed-Forward Neural Networks

This paper addresses the task of set prediction using deep feed-forward neural networks. A set is a collection of elements which is invariant under permutation and the size of a set is not fixed in advance. Many real-world problems, such as image tagging and object detection, have outputs that are n...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 12 vom: 01. Dez., Seite 9011-9025
1. Verfasser: Rezatofighi, Hamid (VerfasserIn)
Weitere Verfasser: Zhu, Tianyu, Kaskman, Roman, Motlagh, Farbod T, Shi, Javen Qinfeng, Milan, Anton, Cremers, Daniel, Leal-Taixe, Laura, Reid, Ian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM332440095
003 DE-627
005 20231225215558.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3122970  |2 doi 
028 5 2 |a pubmed24n1108.xml 
035 |a (DE-627)NLM332440095 
035 |a (NLM)34705634 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rezatofighi, Hamid  |e verfasserin  |4 aut 
245 1 0 |a Learn to Predict Sets Using Feed-Forward Neural Networks 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.11.2022 
500 |a Date Revised 19.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a This paper addresses the task of set prediction using deep feed-forward neural networks. A set is a collection of elements which is invariant under permutation and the size of a set is not fixed in advance. Many real-world problems, such as image tagging and object detection, have outputs that are naturally expressed as sets of entities. This creates a challenge for traditional deep neural networks which naturally deal with structured outputs such as vectors, matrices or tensors. We present a novel approach for learning to predict sets with unknown permutation and cardinality using deep neural networks. In our formulation we define a likelihood for a set distribution represented by a) two discrete distributions defining the set cardinally and permutation variables, and b) a joint distribution over set elements with a fixed cardinality. Depending on the problem under consideration, we define different training models for set prediction using deep neural networks. We demonstrate the validity of our set formulations on relevant vision problems such as: 1) multi-label image classification where we outperform the other competing methods on the PASCAL VOC and MS COCO datasets, 2) object detection, for which our formulation outperforms popular state-of-the-art detectors, and 3) a complex CAPTCHA test, where we observe that, surprisingly, our set-based network acquired the ability of mimicking arithmetics without any rules being coded 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zhu, Tianyu  |e verfasserin  |4 aut 
700 1 |a Kaskman, Roman  |e verfasserin  |4 aut 
700 1 |a Motlagh, Farbod T  |e verfasserin  |4 aut 
700 1 |a Shi, Javen Qinfeng  |e verfasserin  |4 aut 
700 1 |a Milan, Anton  |e verfasserin  |4 aut 
700 1 |a Cremers, Daniel  |e verfasserin  |4 aut 
700 1 |a Leal-Taixe, Laura  |e verfasserin  |4 aut 
700 1 |a Reid, Ian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 12 vom: 01. Dez., Seite 9011-9025  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:12  |g day:01  |g month:12  |g pages:9011-9025 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3122970  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 12  |b 01  |c 12  |h 9011-9025