Structure-Controlled Preparation of Multicompartment Micelles with Tunable Emission through Hydrodynamics-Dependent Self-Assembly in Microfluidic Chips

Multicompartment micelles (MCMs) attracted much attention since they have subdivided domains that could be employed to encapsulate and transport diverse compounds simultaneously. Usually, preparation of MCMs relied on precise synthesis of block copolymers (BCPs) and elegant control of assembly kinet...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 44 vom: 09. Nov., Seite 13099-13106
1. Verfasser: Tan, Zhengping (VerfasserIn)
Weitere Verfasser: Lan, Wei, Mao, Xi, Zhang, Lianbin, Luo, Xiaobing, Xu, Jiangping, Zhu, Jintao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Micelles Polymers
Beschreibung
Zusammenfassung:Multicompartment micelles (MCMs) attracted much attention since they have subdivided domains that could be employed to encapsulate and transport diverse compounds simultaneously. Usually, preparation of MCMs relied on precise synthesis of block copolymers (BCPs) and elegant control of assembly kinetics, making it difficult to successively produce MCMs. Herein, we report a facile yet effective method for preparing MCMs by adjusting the hydrodynamics in microfluidic channels. It was found that well-defined MCMs were formed through hydrodynamics-dependent secondary assembly in microfluidic chips. By adjusting the flow diffusion process by varying the flow rate ratio and total flow rate, both the internal structure and size of MCMs could be effectively changed. A product diagram of micellar morphologies associated to the initial polymer concentration and flow rate ratio of water/BCPs solution was constructed. More interestingly, quantum dots (QDs) could be selectively loaded into different domains of the MCMs. Consequently, the Förster resonance energy transfer among QDs could be effectively suppressed. Thus, the emission spectrum of MCMs/QDs hybrid particles could be easily tuned by changing the ratio of QDs, showing great potential application in photonics and sensors
Beschreibung:Date Completed 27.01.2022
Date Revised 27.01.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c02259