Peptide Hydrogel with Antibacterial Performance Induced by Rare Earth Metal Ions

Metal ion-induced peptide assembly is an interesting field. As compared to traditional antibacterial Ag+, rare earth metal ions possess the advantage of antibacterial performance with photostability and low toxicity. Herein, a new peptide Fmoc-FFWDD-OH was designed and synthesized, which could form...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 44 vom: 09. Nov., Seite 12842-12852
1. Verfasser: Xu, Wenlong (VerfasserIn)
Weitere Verfasser: Zhang, Zhiwen, Zhang, Xin, Tang, Yuanhan, Niu, Yuzhong, Chu, Xiaoxiao, Zhang, Shaohua, Ren, Chunguang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Anti-Bacterial Agents Hydrogels Ions Metals, Rare Earth Peptides
Beschreibung
Zusammenfassung:Metal ion-induced peptide assembly is an interesting field. As compared to traditional antibacterial Ag+, rare earth metal ions possess the advantage of antibacterial performance with photostability and low toxicity. Herein, a new peptide Fmoc-FFWDD-OH was designed and synthesized, which could form a stable hydrogel induced by rare earth metal ions, including Tb3+, Eu3+, and La3+. The mechanical properties were characterized by rheological measurements, and they exhibited elasticity-dominating properties. Transmission electron microscopy (TEM) images showed a large number of nanoscale fiber structures formed in the hydrogel. Circular dichroism (CD) spectra, Fourier transform infrared (FT-IR) spectra, ThT assays, and X-ray diffraction (XRD) pattern illustrated the formation mechanism of the fiber structure. The rare earth ion-induced peptide hydrogel was proved to possess good antibacterial performance on Escherichia coli (E. coli) with excellent biocompatibility. The introduction of rare earth metal ions may have some potential applications in the biological antibacterial and medical fields
Beschreibung:Date Completed 27.01.2022
Date Revised 27.01.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c01815