LEADER 01000naa a22002652 4500
001 NLM332436772
003 DE-627
005 20231225215554.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1111/cobi.13842  |2 doi 
028 5 2 |a pubmed24n1108.xml 
035 |a (DE-627)NLM332436772 
035 |a (NLM)34705299 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Prieto, Pablo V  |e verfasserin  |4 aut 
245 1 0 |a Predicting landscape-scale biodiversity recovery by natural tropical forest regrowth 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.05.2022 
500 |a Date Revised 08.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 Society for Conservation Biology. 
520 |a Natural forest regrowth is a cost-effective, nature-based solution for biodiversity recovery, yet different socioenvironmental factors can lead to variable outcomes. A critical knowledge gap in forest restoration planning is how to predict where natural forest regrowth is likely to lead to high levels of biodiversity recovery, which is an indicator of conservation value and the potential provisioning of diverse ecosystem services. We sought to predict and map landscape-scale recovery of species richness and total abundance of vertebrates, invertebrates, and plants in tropical and subtropical second-growth forests to inform spatial restoration planning. First, we conducted a global meta-analysis to quantify the extent to which recovery of species richness and total abundance in second-growth forests deviated from biodiversity values in reference old-growth forests in the same landscape. Second, we employed a machine-learning algorithm and a comprehensive set of socioenvironmental factors to spatially predict landscape-scale deviation and map it. Models explained on average 34% of observed variance in recovery (range 9-51%). Landscape-scale biodiversity recovery in second-growth forests was spatially predicted based on socioenvironmental landscape factors (human demography, land use and cover, anthropogenic and natural disturbance, ecosystem productivity, and topography and soil chemistry); was significantly higher for species richness than for total abundance for vertebrates (median range-adjusted predicted deviation 0.09 vs. 0.34) and invertebrates (0.2 vs. 0.35) but not for plants (which showed a similar recovery for both metrics [0.24 vs. 0.25]); and was positively correlated for total abundance of plant and vertebrate species (Pearson r = 0.45, p = 0.001). Our approach can help identify tropical and subtropical forest landscapes with high potential for biodiversity recovery through natural forest regrowth 
650 4 |a Journal Article 
650 4 |a Meta-Analysis 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a bosque aleatorio 
650 4 |a bosque secundario 
650 4 |a forest restoration 
650 4 |a meta-analysis 
650 4 |a metaanálisis 
650 4 |a modelos predictivos 
650 4 |a natural regeneration 
650 4 |a planeación espacial 
650 4 |a predictive models 
650 4 |a random forest 
650 4 |a regeneración natural 
650 4 |a restauración forestal 
650 4 |a secondary forest 
650 4 |a spatial planning 
650 7 |a Soil  |2 NLM 
700 1 |a Bukoski, Jacob J  |e verfasserin  |4 aut 
700 1 |a Barros, Felipe S M  |e verfasserin  |4 aut 
700 1 |a Beyer, Hawthorne L  |e verfasserin  |4 aut 
700 1 |a Iribarrem, Alvaro  |e verfasserin  |4 aut 
700 1 |a Brancalion, Pedro H S  |e verfasserin  |4 aut 
700 1 |a Chazdon, Robin L  |e verfasserin  |4 aut 
700 1 |a Lindenmayer, David B  |e verfasserin  |4 aut 
700 1 |a Strassburg, Bernardo B N  |e verfasserin  |4 aut 
700 1 |a Guariguata, Manuel R  |e verfasserin  |4 aut 
700 1 |a Crouzeilles, Renato  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Conservation biology : the journal of the Society for Conservation Biology  |d 1999  |g 36(2022), 3 vom: 15. Juni, Seite e13842  |w (DE-627)NLM098176803  |x 1523-1739  |7 nnns 
773 1 8 |g volume:36  |g year:2022  |g number:3  |g day:15  |g month:06  |g pages:e13842 
856 4 0 |u http://dx.doi.org/10.1111/cobi.13842  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2022  |e 3  |b 15  |c 06  |h e13842