Fe, B, and N Codoped Carbon Nanoribbons Derived from Heteroatom Polymers as High-Performance Oxygen Reduction Reaction Electrocatalysts for Zinc-Air Batteries

For zinc-air batteries, it is of great importance to heighten the oxygen reduction reaction (ORR) activity of cathode electrocatalysts. Herein, we synthesized carbon nanoribbons doped with Fe, B, and N as high-activity ORR electrocatalysts by a templating method. Benefiting from the melamine fiber (...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 44 vom: 09. Nov., Seite 13018-13026
1. Verfasser: Lu, Yue (VerfasserIn)
Weitere Verfasser: Zou, Shanbao, Li, Jiajie, Li, Chenyu, Liu, Xundao, Dong, Dehua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:For zinc-air batteries, it is of great importance to heighten the oxygen reduction reaction (ORR) activity of cathode electrocatalysts. Herein, we synthesized carbon nanoribbons doped with Fe, B, and N as high-activity ORR electrocatalysts by a templating method. Benefiting from the melamine fiber (MF) and B doping, the as-prepared carbon nanoribbon has a high specific surface area, and the improved turnover frequency of Fe sites increases the ORR activity. The as-synthesized Fe-B-N-C electrocatalyst shows an improved half-wave potential and limited current density compared to Fe-N-C, B-N-C, and N-C. Moreover, zinc-air batteries with the Fe-B-N-C electrocatalyst exhibit a higher specific capacity and better long-term durability compared to those with commercial Pt/C. This work provides an effective strategy to synthesize noble-metal-free electrocatalysts for wide applications of zinc-air batteries
Beschreibung:Date Revised 09.11.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c02100