GPU-Based Supervoxel Generation With a Novel Anisotropic Metric

Video over-segmentation into supervoxels is an important pre-processing technique for many computer vision tasks. Videos are an order of magnitude larger than images. Most existing methods for generating supervovels are either memory- or time-inefficient, which limits their application in subsequent...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 8847-8860
1. Verfasser: Dong, Xiao (VerfasserIn)
Weitere Verfasser: Chen, Zhonggui, Liu, Yong-Jin, Yao, Junfeng, Guo, Xiaohu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM332350835
003 DE-627
005 20231225215408.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3120878  |2 doi 
028 5 2 |a pubmed24n1107.xml 
035 |a (DE-627)NLM332350835 
035 |a (NLM)34694996 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dong, Xiao  |e verfasserin  |4 aut 
245 1 0 |a GPU-Based Supervoxel Generation With a Novel Anisotropic Metric 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Video over-segmentation into supervoxels is an important pre-processing technique for many computer vision tasks. Videos are an order of magnitude larger than images. Most existing methods for generating supervovels are either memory- or time-inefficient, which limits their application in subsequent video processing tasks. In this paper, we present an anisotropic supervoxel method, which is memory-efficient and can be executed on the graphics processing unit (GPU). Therefore, our algorithm achieves good balance among segmentation quality, memory usage and processing time. In order to provide accurate segmentation for moving objects in video, we use the optical flow information to design a brand new non-Euclidean metric to calculate the anisotropic distances between seeds and voxels. To efficiently compute the anisotropic metric, we adjust the classic jump flooding algorithm (which is designed for parallel execution on the GPU) to generate anisotropic Voronoi tessellation in the combined color and spatio-temporal space. We evaluate our method and the representative supervoxel algorithms for their capability on segmentation performance, computation speed and memory efficiency. We also apply supervoxel results to the application of foreground propagation in videos to test the performance on solving practical problems. Experiments show that our algorithm is much faster than the existing methods, and achieves good balance on segmentation quality and efficiency 
650 4 |a Journal Article 
700 1 |a Chen, Zhonggui  |e verfasserin  |4 aut 
700 1 |a Liu, Yong-Jin  |e verfasserin  |4 aut 
700 1 |a Yao, Junfeng  |e verfasserin  |4 aut 
700 1 |a Guo, Xiaohu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 8847-8860  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:8847-8860 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3120878  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 8847-8860