Warming and elevated CO2 promote rapid incorporation and degradation of plant-derived organic matter in an ombrotrophic peatland

© 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 28(2022), 3 vom: 15. Feb., Seite 883-898
1. Verfasser: Ofiti, Nicholas O E (VerfasserIn)
Weitere Verfasser: Solly, Emily F, Hanson, Paul J, Malhotra, Avni, Wiesenberg, Guido L B, Schmidt, Michael W I
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article boreal peatland decomposition elevated CO2 lipid biomarker organic matter stable carbon isotope warming Soil Carbon Dioxide 142M471B3J
Beschreibung
Zusammenfassung:© 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Rising temperatures have the potential to directly affect carbon cycling in peatlands by enhancing organic matter (OM) decomposition, contributing to the release of CO2 and CH4 to the atmosphere. In turn, increasing atmospheric CO2 concentration may stimulate photosynthesis, potentially increasing plant litter inputs belowground and transferring carbon from the atmosphere into terrestrial ecosystems. Key questions remain about the magnitude and rate of these interacting and opposing environmental change drivers. Here, we assess the incorporation and degradation of plant- and microbe-derived OM in an ombrotrophic peatland after 4 years of whole-ecosystem warming (+0, +2.25, +4.5, +6.75 and +9°C) and two years of elevated CO2  manipulation (500 ppm above ambient). We show that OM molecular composition was substantially altered in the aerobic acrotelm, highlighting the sensitivity of acrotelm carbon to rising temperatures and atmospheric CO2 concentration. While warming accelerated OM decomposition under ambient CO2 , new carbon incorporation into peat increased in warming × elevated CO2 treatments for both plant- and microbe-derived OM. Using the isotopic signature of the applied CO2 enrichment as a label for recently photosynthesized OM, our data demonstrate that new plant inputs have been rapidly incorporated into peat carbon. Our results suggest that under current hydrological conditions, rising temperatures and atmospheric CO2  levels will likely offset each other in boreal peatlands
Beschreibung:Date Completed 23.02.2022
Date Revised 31.07.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1365-2486
DOI:10.1111/gcb.15955