High Frequency Detail Accentuation in CNN Image Restoration

Given its nature of statistical inference, machine learning methods incline to downplay relatively rare events. But in many applications statistical outliers carry disproportional significance; they can, if being left without special treatment as of now, cause CNNs to perform unsatisfactorily on ins...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 15., Seite 8836-8846
1. Verfasser: Ayyoubzadeh, Seyed Mehdi (VerfasserIn)
Weitere Verfasser: Wu, Xiaolin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM332136728
003 DE-627
005 20231225214959.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3120678  |2 doi 
028 5 2 |a pubmed24n1107.xml 
035 |a (DE-627)NLM332136728 
035 |a (NLM)34673489 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ayyoubzadeh, Seyed Mehdi  |e verfasserin  |4 aut 
245 1 0 |a High Frequency Detail Accentuation in CNN Image Restoration 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Given its nature of statistical inference, machine learning methods incline to downplay relatively rare events. But in many applications statistical outliers carry disproportional significance; they can, if being left without special treatment as of now, cause CNNs to perform unsatisfactorily on instances of interests. This is the reason why existing CNN image restoration methods all suffer from the problem of blurred details. To overcome this weakness, we advocate a new training methodology to sensitize the CNNs to desired events even they are atypical. Specifically for image restoration, we propose a so-called high frequency feature accentuation space that promotes image sharpness and clarity by maximally discriminating the ground truth image and the CNN-restored image in atypical but semantically important features. Then we force the restored image to agree with the ground truth image in the feature accentuation space by including an auxiliary loss term in the training process. This aims at a high degree of agreement of the two images on high frequency constructs such as sharp edges and fine textures, i.e., penalizes image blurs. The new CNN design method is implemented and tested for tasks of image super-resolution and denoising. Experimental results demonstrate the achievement of our design objective 
650 4 |a Journal Article 
700 1 |a Wu, Xiaolin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 15., Seite 8836-8846  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:15  |g pages:8836-8846 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3120678  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 15  |h 8836-8846