Estimating reaction parameters in mechanism-enabled population balance models of nanoparticle size distributions : A Bayesian inverse problem approach

© 2021 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 43(2022), 1 vom: 05. Jan., Seite 43-56
1. Verfasser: Long, Danny K (VerfasserIn)
Weitere Verfasser: Bangerth, Wolfgang, Handwerk, Derek R, Whitehead, Christopher B, Shipman, Patrick D, Finke, Richard G
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Bayesian inversion kinetics and mechanism nanoparticles nucleation and growth particle size distribution population balance modeling
LEADER 01000naa a22002652 4500
001 NLM332125785
003 DE-627
005 20231225214946.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26770  |2 doi 
028 5 2 |a pubmed24n1107.xml 
035 |a (DE-627)NLM332125785 
035 |a (NLM)34672375 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Long, Danny K  |e verfasserin  |4 aut 
245 1 0 |a Estimating reaction parameters in mechanism-enabled population balance models of nanoparticle size distributions  |b A Bayesian inverse problem approach 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.02.2022 
500 |a Date Revised 07.02.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Wiley Periodicals LLC. 
520 |a In order to quantitatively predict nano- as well as other particle-size distributions, one needs to have both a mathematical model and estimates of the parameters that appear in these models. Here, we show how one can use Bayesian inversion to obtain statistical estimates for the parameters that appear in recently derived mechanism-enabled population balance models (ME-PBM) of nanoparticle growth. The Bayesian approach addresses the question of "how well do we know our parameters, along with their uncertainties?." The results reveal that Bayesian inversion statistical analysis on an example, prototype Ir0n nanoparticle formation system allows one to estimate not just the most likely rate constants and other parameter values, but also their SDs, confidence intervals, and other statistical information. Moreover, knowing the reliability of the mechanistic model's parameters in turn helps inform one about the reliability of the proposed mechanism, as well as the reliability of its predictions. The paper can also be seen as a tutorial with the additional goal of achieving a "Gold Standard" Bayesian inversion ME-PBM benchmark that others can use as a control to check their own use of this methodology for other systems of interest throughout nature. Overall, the results provide strong support for the hypothesis that there is substantial value in using a Bayesian inversion methodology for parameter estimation in particle formation systems 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Bayesian inversion 
650 4 |a kinetics and mechanism 
650 4 |a nanoparticles 
650 4 |a nucleation and growth 
650 4 |a particle size distribution 
650 4 |a population balance modeling 
700 1 |a Bangerth, Wolfgang  |e verfasserin  |4 aut 
700 1 |a Handwerk, Derek R  |e verfasserin  |4 aut 
700 1 |a Whitehead, Christopher B  |e verfasserin  |4 aut 
700 1 |a Shipman, Patrick D  |e verfasserin  |4 aut 
700 1 |a Finke, Richard G  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 43(2022), 1 vom: 05. Jan., Seite 43-56  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:43  |g year:2022  |g number:1  |g day:05  |g month:01  |g pages:43-56 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26770  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2022  |e 1  |b 05  |c 01  |h 43-56