An IR Spectroscopy Study of the Degradation of Surface Bound Azido-Groups in High Vacuum

Controlled surface functionalization with azides to perform on surface "click chemistry" is desired for a large range of fields such as material engineering and biosensors. In this work, the stability of an azido-containing self-assembled monolayer in high vacuum is investigated using in s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 43 vom: 02. Nov., Seite 12608-12615
1. Verfasser: Vandenbroucke, Sofie S T (VerfasserIn)
Weitere Verfasser: Nisula, Mikko, Petit, Robin, Vos, Rita, Jans, Karolien, Vereecken, Philippe M, Dendooven, Jolien, Detavernier, Christophe
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Controlled surface functionalization with azides to perform on surface "click chemistry" is desired for a large range of fields such as material engineering and biosensors. In this work, the stability of an azido-containing self-assembled monolayer in high vacuum is investigated using in situ Fourier transform infrared spectroscopy. The intensity of the antisymmetric azide stretching vibration is found to decrease over time, suggesting the degradation of the azido-group in high vacuum. The degradation is further investigated at three different temperatures and at seven different nitrogen pressures ranging from 1 × 10-6 mbar to 5 × 10-3 mbar. The degradation is found to increase at higher temperatures and at lower nitrogen pressures. The latter supporting the theory that the degradation reaction involves the decomposition into molecular nitrogen. For the condition with the highest degradation detected, only 63% of azides is found to remain at the surface after 8 h in vacuum. The findings show a significant loss in control of the surface functionalization. The instability of azides in high vacuum should therefore always be considered when depositing or postprocessing azido-containing layers
Beschreibung:Date Revised 02.11.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c01903