Exploring Spatial Diversity for Region-Based Active Learning

State-of-the-art methods for semantic segmentation are based on deep neural networks trained on large-scale labeled datasets. Acquiring such datasets would incur large annotation costs, especially for dense pixel-level prediction tasks like semantic segmentation. We consider region-based active lear...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 8702-8712
1. Verfasser: Cai, Lile (VerfasserIn)
Weitere Verfasser: Xu, Xun, Zhang, Lining, Foo, Chuan-Sheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM332059839
003 DE-627
005 20231225214820.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3120041  |2 doi 
028 5 2 |a pubmed24n1106.xml 
035 |a (DE-627)NLM332059839 
035 |a (NLM)34665728 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cai, Lile  |e verfasserin  |4 aut 
245 1 0 |a Exploring Spatial Diversity for Region-Based Active Learning 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a State-of-the-art methods for semantic segmentation are based on deep neural networks trained on large-scale labeled datasets. Acquiring such datasets would incur large annotation costs, especially for dense pixel-level prediction tasks like semantic segmentation. We consider region-based active learning as a strategy to reduce annotation costs while maintaining high performance. In this setting, batches of informative image regions instead of entire images are selected for labeling. Importantly, we propose that enforcing local spatial diversity is beneficial for active learning in this case, and to incorporate spatial diversity along with the traditional active selection criterion, e.g., data sample uncertainty, in a unified optimization framework for region-based active learning. We apply this framework to the Cityscapes and PASCAL VOC datasets and demonstrate that the inclusion of spatial diversity effectively improves the performance of uncertainty-based and feature diversity-based active learning methods. Our framework achieves 95% performance of fully supervised methods with only 5 - 9% of the labeled pixels, outperforming all state-of-the-art region-based active learning methods for semantic segmentation 
650 4 |a Journal Article 
700 1 |a Xu, Xun  |e verfasserin  |4 aut 
700 1 |a Zhang, Lining  |e verfasserin  |4 aut 
700 1 |a Foo, Chuan-Sheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 8702-8712  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:8702-8712 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3120041  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 8702-8712