Sparse PCA via l2,p-Norm Regularization for Unsupervised Feature Selection

In the field of data mining, how to deal with high-dimensional data is an inevitable topic. Since it does not rely on labels, unsupervised feature selection has attracted a lot of attention. The performance of spectral-based unsupervised methods depends on the quality of the constructed similarity m...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 4 vom: 01. Apr., Seite 5322-5328
1. Verfasser: Li, Zhengxin (VerfasserIn)
Weitere Verfasser: Nie, Feiping, Bian, Jintang, Wu, Danyang, Li, Xuelong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article