|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM332025977 |
003 |
DE-627 |
005 |
20231225214740.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.2166/wst.2021.340
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1106.xml
|
035 |
|
|
|a (DE-627)NLM332025977
|
035 |
|
|
|a (NLM)34662299
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Nie, Rong
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Removal of multiple metal ions from wastewater by a multifunctional metal-organic-framework based trap
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 20.10.2021
|
500 |
|
|
|a Date Revised 07.12.2022
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The design and preparation of multifunctional adsorbent for practical wastewater treatment is still an enormous challenge. To remove multiple metal ions from wastewater, we developed a broad-spectrum metal ions trap named UIO-67-EDTA by incorporation of ethylenediaminetetraacetic acid into robust UIO-67. The adsorption experiments for 15 kinds of heavy metal ions including hard acid (Mn2+, Ba2+, Al3+, Cr3+, Fe3+), borderline acid (Co2+, Ni2+, Cu2+, Zn2+, Pb2+, Sn2+, Bi2+), soft acid (Ag+, Cd2+, Hg2+), and two kinds of dissolved minerals (Mg2+, Ca2+) show that the trap is very effective both in batch adsorption processes and breakthrough processes. At a pH value of 4.0, the removal efficiency for all metal ions was over 98% within 10 min, and the maximum static adsorption capacity for the representative metal ions Cr3+, Hg2+and Pb2+ was up to 416.67, 256.41, and 312.15 mg g-1, respectively. The adsorption kinetics fitted well with the pseudo-second-order model, indicating that the chemical adsorption was the rate-determining step in the adsorption process. Meanwhile, the material showed high stability and recyclability, the removal efficiency for the three representative metals was still maintained over 93% after five consecutive adsorption cycles
|
650 |
|
4 |
|a Journal Article
|
650 |
|
7 |
|a Ions
|2 NLM
|
650 |
|
7 |
|a Metal-Organic Frameworks
|2 NLM
|
650 |
|
7 |
|a Metals, Heavy
|2 NLM
|
650 |
|
7 |
|a Waste Water
|2 NLM
|
650 |
|
7 |
|a Water Pollutants, Chemical
|2 NLM
|
700 |
1 |
|
|a Yang, Cailing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Jing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dong, Kun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Guohu
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water science and technology : a journal of the International Association on Water Pollution Research
|d 1986
|g 84(2021), 7 vom: 11. Okt., Seite 1594-1607
|w (DE-627)NLM098149431
|x 0273-1223
|7 nnns
|
773 |
1 |
8 |
|g volume:84
|g year:2021
|g number:7
|g day:11
|g month:10
|g pages:1594-1607
|
856 |
4 |
0 |
|u http://dx.doi.org/10.2166/wst.2021.340
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 84
|j 2021
|e 7
|b 11
|c 10
|h 1594-1607
|