Tin-Based Anode Materials for Stable Sodium Storage : Progress and Perspective
© 2022 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 7 vom: 13. Feb., Seite e2106895 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article Review anodes reaction mechanism sodium-ion batteries structure design tin-based materials |
Zusammenfassung: | © 2022 Wiley-VCH GmbH. Because of concerns regarding shortages of lithium resources and the urgent need to develop low-cost and high-efficiency energy-storage systems, research and applications of sodium-ion batteries (SIBs) have re-emerged in recent years. Herein, recent advances in high-capacity Sn-based anode materials for stable SIBs are highlighted, including tin (Sn) alloys, Sn oxides, Sn sulfides, Sn selenides, Sn phosphides, and their composites. The reaction mechanisms between Sn-based materials and sodium are clarified. Multiphase and multiscale structural optimizations of Sn-based materials to achieve good sodium-storage performance are emphasized. Full-cell designs using Sn-based materials as anodes and further development of Sn-based materials are discussed from a commercialization perspective. Insights into the preparation of future high-performance Sn-based anode materials and the construction of sodium-ion full batteries with a high energy density and long service life are provided |
---|---|
Beschreibung: | Date Revised 17.02.2022 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202106895 |