Plasmonic Amyloid Tactoids

© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 51 vom: 30. Dez., Seite e2106155
1. Verfasser: Yuan, Ye (VerfasserIn)
Weitere Verfasser: Almohammadi, Hamed, Probst, Julie, Mezzenga, Raffaele
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article amyloid fibrils fluorescence gold nanorods liquid crystals plasmonics self-assembly Amyloid Gold 7440-57-5
Beschreibung
Zusammenfassung:© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Despite their link to neurodegenerative diseases, amyloids of natural and synthetic sources can also serve as building blocks for functional materials, while possessing intrinsic photonic properties. Here, it is demonstrated that orientationally ordered amyloid fibrils exhibit polarization-dependent fluorescence, and can mechanically align rod-shaped plasmonic nanoparticles codispersed with them. The coupling between the photonic fibrils in liquid crystalline phases and the plasmonic effect of the nanoparticles leads to selective activation of plasmonic extinctions as well as enhanced fluorescence from the hybrid material. These findings are consistent with numerical simulations of the near-field plasmonic enhancement around the nanoparticles. The study provides an approach to synthesize the intrinsic photonic and mechanical properties of amyloid into functional hybrid materials, and may help improve the detection of amyloid deposits based on their enhanced intrinsic luminescence
Beschreibung:Date Completed 24.07.2024
Date Revised 13.10.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202106155